...
首页> 外文期刊>Hydrology and Earth System Sciences >LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California
【24h】

LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California

机译:加利福尼亚内华达州南部沿海拔梯度的LiDAR季节性雪积雪测量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present results from snow-on and snow-off airborne-scanning LiDAR measurements over a 53 km(2) area in the southern Sierra Nevada. We found that snow depth as a function of elevation increased approximately 15 cm per 100 m, until reaching an elevation of 3300 m, where depth sharply decreased at a rate of 48 cm per 100 m. Departures from the 15 cm per 100 m trend, based on 1 m elevation-band means of regression residuals, showed slightly less steep increases below 2050 m; steeper increases between 2050 and 3300 m; and less steep increases above 3300 m. Although the study area is partly forested, only measurements in open areas were used. Below approximately 2050 m elevation, ablation and rainfall are the primary causes of departure from the orographic trend. From 2050 to 3300 m, greater snow depths than predicted were found on the steeper terrain of the northwest and the less steep northeast-facing slopes, suggesting that ablation, aspect, slope and wind redistribution all play a role in local snow-depth variability. At elevations above 3300 m, orographic processes mask the effect of wind deposition when averaging over large areas. Also, terrain in this basin becomes less steep above 3300 m. This suggests a reduction in precipitation from upslope lifting and/or the exhaustion of precipitable water from ascending air masses. Our results suggest a cumulative precipitation lapse rate for the 2100-3300 m range of about 6 cm per 100 m elevation for the accumulation period of 3 December 2009 to 23 March 2010. This is a higher gradient than the widely used PRISM (Parameter-elevation Relationships on Independent Slopes Model) precipitation products, but similar to that from re-construction of snowmelt amounts from satellite snow-cover data. Our findings provide a unique characterization of the consistent, steep average increase in precipitation with elevation in snow-dominated terrain, using high-resolution, highly accurate data and highlighs the importance of solar radiation, wind redistribution and mid-winter melt with regard to snow distribution.
机译:我们展示了内华达山脉南部53 km(2)区域上的降雪和降雪机载扫描LiDAR测量的结果。我们发现,随深度变化的雪深每100 m增加约15 cm,直到达到3300 m,深度以每100 m 48 cm的速度急剧减小。基于1 m回归残差的高程带平均值,偏离每100 m 15 cm趋势的趋势表明,在2050 m以下,陡峭的增加幅度略小; 2050至3300 m之间的上升幅度更大; 3300 m以上的陡峭上升幅度较小。尽管研究区域部分被森林覆盖,但仅在空旷地区进行测量。在海拔约2050 m以下,消融和降雨是偏离地形趋势的主要原因。从2050年到3300 m,在西北较陡的地形和较不朝东北的斜坡上发现的积雪深度大于预期,这表明烧蚀,坡向,坡度和风的重新分布都在局部积雪深度的变化中起作用。在海拔3300 m以上的地方,地形过程会掩盖大面积平均时的风积影响。同样,该盆地的地形在3300 m以上变得不那么陡峭。这表明上升的坡度减少了降水,和/或上升的空气团耗尽了可沉淀的水。我们的结果表明,在2100-3300 m范围内,从2009年12月3日到2010年3月23日的累积期,每100 m高程约6 cm的累积降水流失率。这比普遍使用的PRISM(参数高程)高。独立斜坡模型的关系)降水产物,但类似于通过卫星积雪数据重建积雪量的关系。我们的发现使用高分辨率,高精度数据以及太阳辐射,风的重新分布和冬季融化对雪的重要性,提供了一个独特的特征,即在以雪为主的地形中,降水随海拔的升高而持续不断地急剧增加。分配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号