首页> 外文学位 >Snow distribution over an elevation gradient and forest snow hydrology of the southern Sierra Nevada, California.
【24h】

Snow distribution over an elevation gradient and forest snow hydrology of the southern Sierra Nevada, California.

机译:加利福尼亚内华达山脉南部的海拔梯度上的积雪分布和森林积雪水文。

获取原文
获取原文并翻译 | 示例

摘要

The Mountain West region of the United States is highly dependent on ecosystem services from the mountain snowpack, one of the most vulnerable components of earth's fresh water cycle. The growing demand for fresh water in a period of climatic non-stationarity requires new approaches to monitoring and prediction. We investigate snow distribution and its effect on subsurface water storage in the southern Sierra Nevada, California using the combination of in-situ measurements, airborne LiDAR-snow-depth altimetry, satellite snow-cover maps, and novel spatial analysis. Using these data and methods we address questions about the mountain snowpack pertaining to: i) broad-scale distribution of snow accumulation governed by elevation and topography, ii) the effects of forest canopy on snow accumulation and ablation, at multiple scales, and iii) the partitioning of water in the vadose zone after snowmelt. Our results show that snow depth as a function of elevation increased at a rate of approximately 15 cm 100 m-1 until reaching an elevation of 3300 m where depth sharply decreased at a rate of 48 cm 100 m-1. Departures from this trend were mostly negative below 2050 m, mostly positive between 2050-3300 m and negative above 3300 m, and attributed to orographic processes, mean freezing level, slope, terrain orientation and wind redistribution. High point-density LiDAR measured 31-44% of under-canopy area, where snow depth was12- 24% lower than in the open, depending on forest vegetation type. The metrics of mean canopy height, canopy-to-ground surface ratio, fractional canopy cover, and canopy- height standard deviation individually explained half 45-58% of the storm accumulation variability. Sky view factor explained up to 87% of the variability in snow ablation rates in the cloudiest snow-melt seasons and direct beam solar irradiance explained up to 58% in the clearest. The timing of soil dry-down is relatively uniform, but due to the heterogeneity of snowmelt it's timing is offset by up to 4 weeks at the same elevation depending on location. Baseflow and evapotranspiration continue after soil dry down has reached a plateau, suggesting that water is drawn from soil saprolite and saprock at depths >1 m below the surface.
机译:美国的西部山区高度依赖山脉积雪的生态系统服务,而山脉积雪是地球淡水循环中最脆弱的部分之一。在气候不稳定时期,对淡水的需求不断增长,因此需要新的监测和预测方法。我们结合现场测量,机载LiDAR-雪深测高仪,卫星积雪地图和新颖的空间分析方法,研究了加利福尼亚内华达山脉南部的积雪分布及其对地下蓄水的影响。使用这些数据和方法,我们可以解决以下有关山区积雪的问题:i)受海拔和地形控制的积雪的广泛分布; ii)森林冠层在多尺度上对积雪和消融的影响; iii)融雪后渗流区水的分配。我们的结果表明,积雪深度随高度的变化以大约15 cm 100 m-1的速度增加,直到达到3300 m的高度,深度以48 cm 100 m-1的速度急剧减小。偏离该趋势的地区多数在2050 m以下为负值,在2050-3300 m之间大部分为正值,而在3300 m以上则为负值,这归因于地形过程,平均冻结水平,坡度,地形方向和风向重新分布。根据森林植被类型,高点密度LiDAR测得的冠层下面积为31-44%,其中的雪深比野外低12-24%。平均冠层高度,冠层与地面的表面积比,冠层覆盖率的分数以及冠层高度标准偏差的度量标准分别解释了风暴累积变异的一半(45%至58%)。在最多云的融雪季节中,天空视野因素可解释高达87%的融雪率变化,而在最晴朗的季节,直接射束太阳辐照度可解释高达58%。土壤变干的时间相对均匀,但是由于融雪的异质性,在相同的高度(取决于位置),其时间最多可偏移4周。在土壤干燥达到高原之后,基流和蒸散量仍在继续,这表明水从土壤腐泥土和边际岩层中抽取的水深度大于地表以下1 m。

著录项

  • 作者

    Kirchner, Peter Bernard.;

  • 作者单位

    University of California, Merced.;

  • 授予单位 University of California, Merced.;
  • 学科 Physical Geography.;Remote Sensing.;Hydrology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号