...
首页> 外文期刊>Hydrology and Earth System Sciences Discussions >LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California
【24h】

LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California

机译:加利福尼亚州南部塞拉纳南部海拔梯度季节雪积累的激光乐节测量

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We present results from snow-on and snow-off airborne-scanning LiDAR measurements over a 53 km2 area in the southern Sierra Nevada. We found that snow depth as a function of elevation increased approximately 15 cm per 100 m, until reaching an elevation of 3300 m, where depth sharply decreased at a rate of 48 cm per 100 m. Departures from the 15 cm per 100 m trend, based on 1 m elevation-band means of regression residuals, showed slightly less steep increases below 2050 m; steeper increases between 2050 and 3300 m; and less steep increases above 3300 m. Although the study area is partly forested, only measurements in open areas were used. Below approximately 2050 m elevation, ablation and rainfall are the primary causes of departure from the orographic trend. From 2050 to 3300 m, greater snow depths than predicted were found on the steeper terrain of the northwest and the less steep northeast-facing slopes, suggesting that ablation, aspect, slope and wind redistribution all play a role in local snow-depth variability. At elevations above 3300 m, orographic processes mask the effect of wind deposition when averaging over large areas. Also, terrain in this basin becomes less steep above 3300 m. This suggests a reduction in precipitation from upslope lifting and/or the exhaustion of precipitable water from ascending air masses. Our results suggest a cumulative precipitation lapse rate for the 2100–3300 m range of about 6 cm per 100 m elevation for the accumulation period of 3 December 2009 to 23 March 2010. This is a higher gradient than the widely used PRISM (Parameter-elevation Relationships on Independent Slopes Model) precipitation products, but similar to that from reconstruction of snowmelt amounts from satellite snow-cover data. Our findings provide a unique characterization of the consistent, steep average increase in precipitation with elevation in snow-dominated terrain, using high-resolution, highly accurate data and highlighs the importance of solar radiation, wind redistribution and mid-winter melt with regard to snow distribution.
机译:我们在南部的塞拉尼达南部的53平方公里地区展示了雪花和雪花空中扫描的Lidar测量结果。我们发现雪皑皑的阳光升高,每100米的函数增加约15厘米,直到达到3300米的升高,其中深度以每100米48厘米的速度急剧下降。从15厘米的趋势从15厘米的趋势,基于1米的升高频段回归残留物,略微较低的陡峭增加到2050米以下;陡峭的增加2050和3300米;陡峭的陡峭较高超过3300米。虽然研究区是部分森林的,但仅使用开放区域的测量。低于约2050米的海拔,消融和降雨是偏离地形趋势的主要原因。从2050年到3300米,在西北最陡峭的地形和陡峭的东北倾斜斜坡上发现了比预期更大的雪渊,这表明消融,方面,坡度和风调配都在局部雪深处发挥作用。在高于3300米以上的高度时,地形过程在大区域平均时掩盖风沉积的效果。此外,这种盆地的地形变得越陡峭3300米。这表明从上升空气肿块上升升降和/或降水降低降水。我们的结果表明,2009年12月3日至2010年3月23日累积期为每100米升高约6厘米的累积降水率约为6厘米。这是比广泛使用的棱镜更高的梯度(参数 - 高度独立斜坡模型的关系)降水产物,但与卫星雪覆盖数据的重建雪镜数量类似。我们的调查结果提供了一致,陡峭平均水平的独特表征,在雪主导地形中提升,使用高分辨率,高度准确的数据和高度的太阳辐射,风再分配和中冬季融化的重要性分配。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号