首页> 外文期刊>Hydrology and Earth System Sciences >Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite
【24h】

Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite

机译:使用MSG / SEVIRI卫星衍生的生物物理变量改善陆地表面模型的蒸散量

获取原文
获取原文并翻译 | 示例
       

摘要

Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG) and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF) are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I), showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual) variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI) and Fractional Vegetation Cover (FVC) products for evapotranspiration monitoring with a land surface model at 3–5 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north-south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land surface temperature shows an improvement of the evapotranspiration simulations.
机译:监测陆地上的蒸散量高度依赖于表面状态和植被动态。需要来自太空平台的数据来补充地表模型的估计。每天在大陆范围内蒸散监测的成功取决于这些数据的可用性,质量和连续性。从地球静止卫星Meteosat第二代(MSG)上的SEVIRI导出并由陆地表面分析卫星应用设施(LSA-SAF)分发的生物物理变量对于此类应用特别有趣,因为它们旨在提供连续且一致的每日时间非洲,欧洲和南美近乎实时的电视连续剧。在本文中,我们将它们与常用于数值天气预报(ECOCLIMAP-I)的数据库中的月度植被参数进行了比较,显示了新的日常产品在检测林分的时空(季节和年际)变化中的优势。植被,尤其与非洲有关。我们提出了一种方法来处理叶面积指数(LAI)和部分植被覆盖(FVC)产品,以3–5 km空间分辨率的陆地表面模型进行蒸散监测。该方法被认为适用于大陆规模的近实时过程,并且依赖于土地覆盖图的使用。我们评估了将LSA-SAF生物物理变量与ECOCLIMAP-I相比对通过陆地表面模型H-TESSEL估算的蒸散量的影响。与欧洲和非洲的实地观测结果进行比较,可以更好地估算蒸散量,尤其是在半干旱气候下。最后,利用遥感得出的LSA-SAF辐射强迫,比较了西非植被和气候梯度较大的南北横断面对陆地蒸散量的影响。差异突出显示。对遥感得出的陆地表面温度进行的评估表明,蒸散模拟得到了改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号