首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite
【24h】

Improving evapotranspiration in a land surface model using biophysical variables derived from MSG/SEVIRI satellite

机译:使用来自MSG / Seviri卫星的生物物理变量改善陆地表面模型中的蒸发

获取原文
       

摘要

Monitoring evapotranspiration over land is highly dependent on the surface state and vegetation dynamics. Data from spaceborn platforms are desirable to complement estimations from land surface models. The success of daily evapotranspiration monitoring at continental scale relies on the availability, quality and continuity of such data. The biophysical variables derived from SEVIRI on board the geostationary satellite Meteosat Second Generation (MSG) and distributed by the Satellite Application Facility on Land surface Analysis (LSA-SAF) are particularly interesting for such applications, as they aimed at providing continuous and consistent daily time series in near-real time over Africa, Europe and South America. In this paper, we compare them to monthly vegetation parameters from a database commonly used in numerical weather predictions (ECOCLIMAP-I), showing the benefits of the new daily products in detecting the spatial and temporal (seasonal and inter-annual) variability of the vegetation, especially relevant over Africa. We propose a method to handle Leaf Area Index (LAI) and Fractional Vegetation Cover (FVC) products for evapotranspiration monitoring with a land surface model at 35 km spatial resolution. The method is conceived to be applicable for near-real time processes at continental scale and relies on the use of a land cover map. We assess the impact of using LSA-SAF biophysical variables compared to ECOCLIMAP-I on evapotranspiration estimated by the land surface model H-TESSEL. Comparison with in-situ observations in Europe and Africa shows an improved estimation of the evapotranspiration, especially in semi-arid climates. Finally, the impact on the land surface modelled evapotranspiration is compared over a north–south transect with a large gradient of vegetation and climate in Western Africa using LSA-SAF radiation forcing derived from remote sensing. Differences are highlighted. An evaluation against remote sensing derived land surface temperature shows an improvement of the evapotranspiration simulations.
机译:在土地上监测蒸散量高度依赖于地表状态和植被动态。空间生物平台的数据是可取的,以补充陆地面模型的估计。大陆规模日常蒸散监测的成功依赖于此类数据的可用性,质量和连续性。从地静止卫星MeteoSat第二代(MSG)上源自Seviri的生物物理变量并由卫星应用设施分布在陆地表面分析(LSA-SAF)上对这些应用特别有趣,因为它们旨在提供连续和一致的日常时间在非洲,欧洲和南美洲的近实时系列。在本文中,我们将它们与在数值天气预报(Ecoclimap-I)中常用的数据库中的每月植被参数进行比较,显示新的日常产品在检测空间和时间(季节性和年度)变异方面的益处植被,特别是与非洲相关的。我们提出了一种方法来处理叶片区域指数(LAI)和分数植被覆盖(FVC)产品,用于以35公里的空间分辨率与陆地表面模型进行蒸发监测。该方法被认为适用于大陆尺度的近实时过程,并依赖于使用陆地覆盖图。我们评估使用LSA-SAF生物物理变量与Ecoclimap-I相比的影响在陆地表面模型H-Tessel估计的蒸发蒸腾上。与欧洲和非洲的原位观察的比较显示出改善对蒸散的估计,特别是在半干旱气候中。最后,将对南北横断面的北方横断面进行了对南北横断的影响,并使用遥感的LSA-SAF辐射强制植被和气候的北方横断面进行了比较。突出显示的差异。针对遥感衍生的陆地温度的评估显示出蒸发蒸腾模拟的改善。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号