首页> 外文期刊>Human Molecular Genetics >Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III.
【24h】

Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III.

机译:酵母中亨廷顿蛋白突变片段的细胞毒性涉及线粒体OXPHOS复合物II和III的早期改变。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Mitochondrial dysfunction may play an important role in the pathogenic mechanism of Huntington's disease (HD). However, the exact mechanism by which mutated huntingtin could cause bioenergetic dysfunction is still unknown. We have constructed a stable inducible yeast model of HD by expressing a human huntingtin fragment containing a mutant polyglutamine tract of 103Q fused to green fluorescent protein (GFP), and a control expressing a wild-type 25Q domain fused to GFP in a wild-type strain. We showed that in yeast cells expressing 103Q, cell respiration was progressively reduced after 4-6 h of induction with galactose, down to 50% of the control after 10 h of induction. The cell respiration defect results from an alteration in the function and amount of mitochondrial respiratory chain complex II+III, in congruency to data obtained from postmortem brain of HD patients and from toxin models. In our model, the production of reactive oxygen species (ROS) is significantly enhanced in cells expressing 103Q. Quenching of ROS with resveratrol partially prevents the cell respiration defect. Mitochondrial morphology and distribution were also altered in cells expressing 103Q, probably resulting from the interaction of aggregates with portions of the mitochondrial web and from a progressive disruption of the actin cytoskeleton. We propose a mechanism for mitochondrial dysfunction in our yeast model of HD in which the interactions of misfolded/aggregated polyglutamine domains with the mitochondrial and actin networks lead to disturbances in mitochondrial distribution and function and to increase in ROS production. Oxidative damage could preferentially affect the stability and function of enzymes containing iron-sulfur clusters such as complexes II and III. Our yeast model represents a very useful paradigm to study mitochondrial physiology alterations in the pathogenic mechanism of HD.
机译:线粒体功能障碍可能在亨廷顿舞蹈病(HD)的致病机制中起重要作用。然而,亨廷顿基因突变可能引起生物能功能障碍的确切机制仍不清楚。我们通过表达包含与绿色荧光蛋白(GFP)融合的103Q突变聚谷氨酰胺片段的人类亨廷顿片段,以及在野生型中表达与GFP融合的野生型25Q结构域的对照,构建了稳定的HD酵母模型应变。我们表明,在表达103Q的酵母细胞中,半乳糖诱导4-6小时后,细胞的呼吸逐渐减少,诱导10小时后,其呼吸作用降至对照的50%。细胞呼吸缺陷是由线粒体呼吸链复合物II + III的功能和数量的变化导致的,与从HD患者的死后大脑和毒素模型获得的数据一致。在我们的模型中,表达103Q的细胞中活性氧(ROS)的产生显着增强。用白藜芦醇淬灭ROS可以部分防止细胞呼吸缺陷。在表达103Q的细胞中,线粒体的形态和分布也发生了变化,这可能是由于聚集体与线粒体纤维网部分的相互作用以及肌动蛋白细胞骨架的逐步破坏所致。我们提出了HD酵母模型中线粒体功能障碍的机制,其中错误折叠/聚集的聚谷氨酰胺结构域与线粒体和肌动蛋白网络的相互作用导致线粒体分布和功能紊乱,并增加了ROS的产生。氧化损伤可能会优先影响含有铁硫簇的酶(如配合物II和III)的稳定性和功能。我们的酵母模型代表了一种非常有用的范例,可用于研究HD致病机制中的线粒体生理变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号