...
首页> 外文期刊>Horticulture,Environment,and Biotechnology >Development of a coupled photosynthetic model of sweet basil hydroponically grown in plant factories
【24h】

Development of a coupled photosynthetic model of sweet basil hydroponically grown in plant factories

机译:植物工厂水培甜罗勒光合作用耦合模型的建立

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

For the production of plants in controlled environments such as greenhouses and plant factories, crop modeling and simulations are effective tools for configuring the optimal growth environment. The objective of this study was to develop a coupled photosynthetic model of sweet basil (Ocimum basilicum L.) reflecting plant factory conditions. Light response curves were generated using photosynthetic models such as negative exponential, rectangular hyperbola, and non-rectangular hyperbola functions. The light saturation and compensation points determined by regression analysis of light curves using modified non-rectangular hyperbola function in sweet basil leaves were 545.3 and 26.5 A mu mol center dot m(-2)center dot s(-1), respectively. The non-rectangular hyperbola was the most accurate with complicated parameters, whereas the negative exponential was more accurate than the rectangular hyperbola and could more easily acquire the parameters of the light response curves of sweet basil compared to the non-rectangular hyperbola. The CO2 saturation and compensation points determined by regression analysis of the A-C-i curve were 728.8 and 85.1 A mu mol center dot mol(-1), respectively. A coupled biochemical model of photosynthesis was adopted to simultaneously predict the photosynthesis, stomatal conductance, transpiration, and temperature of sweet basil leaves. The photosynthetic parameters, maximum carboxylation rate, potential rate of electron transport, and rate of triose phosphate utilization determined by Sharkey's regression method were 102.6, 117.7, and 7.4 A mu mol center dot m(-2)center dot s(-1), respectively. Although the A-C-i regression curve of the negative exponential had higher accuracy than the biochemical model, the coupled biochemical model enable to physiologically explain the photosynthesis of sweet basil leaves.
机译:对于在受控环境(例如温室和工厂工厂)中生产植物,作物建模和模拟是配置最佳生长环境的有效工具。这项研究的目的是建立反映植物工厂状况的甜罗勒(Ocimum basilicum L.)的光合作用耦合模型。使用光合模型(例如负指数,矩形双曲线和非矩形双曲线函数)生成光响应曲线。使用改良的非矩形双曲线函数对甜罗勒叶的光曲线进行回归分析确定的光饱和度和补偿点分别为545.3和26.5 Aμmol中心点m(-2)中心点s(-1)。与非矩形双曲线相比,非矩形双曲线在参数复杂时最为准确,而负指数比矩形双曲线更准确,并且可以更轻松地获取甜罗勒光响应曲线的参数。通过A-C-i曲线的回归分析确定的CO2饱和点和补偿点分别为728.8和85.1 Aμmol中心点mol(-1)。采用光合作用的生化耦合模型来同时预测甜罗勒叶片的光合作用,气孔导度,蒸腾作用和温度。通过Sharkey回归方法确定的光合参数,最大羧化速率,电子传输的潜在速率和磷酸三糖利用速率分别为102.6、117.7和7.4 Aμmol中心点m(-2)中心点s(-1),分别。尽管负指数的A-C-i回归曲线比生化模型具有更高的准确性,但是耦合生化模型能够从生理上解释甜罗勒叶的光合作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号