...
首页> 外文期刊>Herz >Electrophysiological properties of stem cells
【24h】

Electrophysiological properties of stem cells

机译:干细胞的电生理特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

New concepts for treatment of myocardial infarction include the implantation of adult stem cells for regeneration of damaged muscle tissue. Several clinical trials have demonstrated a small, but significant improvement of ventricular function. Transdifferentiation of stem cells into cardiomyocytes, formation of new vessels and paracrine factors have been discussed as putative mechanisms for the therapeutic effect. Several types of stem cells have been used clinically including myoblasts derived from skeletal muscle satellite cells, bone marrow-derived stem cells or blood-derived mononuclear progenitor cells. In addition, multiple organs were shown to contain a small number of stem cells that could differentiate into cardiomyocytes.Embryonic stem cells differentiate into spontaneously beating cells that have varying electrophysiological properties. Their action potentials resemble those of cardiac pacemaker cell, atrial or ventricular myocytes (Figure 1) suggesting true differentiation into cardiomyocytes. Beating cells derived from a newly described population of skeletal muscle-derived cells ("skeletal precursors of cardiomyocytes" [SPOCs]) also exhibit spontaneous action potentials, however, unlike cardiac pacemaker cells, their electrical activity is suppressed with the sodium channel blocker tetrodotoxin (Figure 2). Undifferentiated bone marrow-derived mesenchymal stem cells are not electrically excitable. Nevertheless, they express functional ion channels like L-type Ca(2+) channels, albeit not in every cell. Co-culturing stem cells with neonatal rat ventricular myocytes induces good electrical contacts between cells via gap junction formation. Excitatory wave fronts spread evenly in the co-culture. By contrast, gap junctions fail to form when myoblasts are co-cultured with neonatal cardiomyocytes and reentry arrhythmias develop. This pathomechanism could serve as an explanation for the enhanced clinical risk of arrhythmia after transplantation of myoblasts into the infarcted hearts.
机译:治疗心肌梗塞的新概念包括植入成人干细胞以再生受损的肌肉组织。几项临床试验表明,心室功能有微小但明显的改善。干细胞转分化为心肌细胞,新血管的形成和旁分泌因子已被认为是治疗效果的可能机制。临床上已经使用了几种类型的干细胞,包括源自骨骼肌卫星细胞的成肌细胞,源自骨髓的干细胞或源自血液的单核祖细胞。此外,还显示出多个器官中含有少量可以分化为心肌细胞的干细胞,而胚胎干细胞则分化为具有不同电生理特性的自发搏动细胞。它们的动作电位类似于心脏起搏器细胞,心房或心室肌细胞的动作电位(图1),提示它们确实分化为心肌细胞。从新描述的骨骼肌衍生细胞群(“心肌细胞的骨骼前体” [SPOCs])衍生的搏动细胞也显示出自发动作电位,但是,与心脏起搏器细胞不同,其电活动被钠通道阻滞剂河豚毒素(图2)。未分化的骨髓间充质干细胞不具有电兴奋性。然而,尽管不是在每个细胞中,它们仍表达功能性离子通道,如L型Ca(2+)通道。干细胞与新生大鼠心室肌细胞的共培养可通过间隙连接形成在细胞之间诱导良好的电接触。兴奋性的波阵面在共培养中均匀分布。相反,当成肌细胞与新生儿心肌细胞共培养并形成折返性心律不齐时,间隙连接将无法形成。这种病理机制可以解释成肌细胞移植到梗死心脏后心律失常临床风险的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号