首页> 外文期刊>Heat Treating Progress >LOW TORR-RANGE VACUUM NITRIDING OF 4140 STEEL
【24h】

LOW TORR-RANGE VACUUM NITRIDING OF 4140 STEEL

机译:4140钢的低Torr范围真空氮化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The experimental work completed thus far indicates that the calculated alpha - gamma' phase boundary at 125 torr is within 20 percent of the experimental values. However/additional experimental work is required to determine whether the actual boundary at 125 torr is closer to the conditions that produced white layer, or those that did not. Nevertheless, the preliminary results indicate that the method used to calculate the boundary at 125 torr is reasonable. Low-torr nitriding requires higher critical input ammonia content (higher input nitriding potential) as the nitriding pressure is reduced. The modification of the input ammonia content is the result of reduced partial pressures of ammonia and hydrogen in addition to the differential pump-out of ammonia compared with hydrogen. Although the nitrided surfaces from atmospheric pressure nitriding and low-torr nitriding are similar, there are some advantages of the low-pressure nitriding. The turn around time for a nitriding cycle is quicker owing to the fact that in a vacuum furnace there is no retort to heat up and cool down. Further, accelerated cool-down is accomplished by circulating inert gas across a water-cooled heat exchanger, similar to typical vacuum furnace quenching, Vacuum processing produces a very pure starting atmosphere, eliminating the need for a nitrogen purge, and provides the ability to clean the surfaces of the parts using hydrogen prior to the nitriding step of the cycle. The hydrogen treatment can be accomplished at less than 150 torr, and this greatly minimizes any explosion Risk Low pressure processing also maintains a dynamic/uniform atmosphere in the chamber, eliminating the need for a convection fan. And of particular significance, the vacuum chamber provides an extremely tight thermally and atmospherically uniform furnace, which is ideally suited for precise functionality of modern-day instrumentation control of the nitriding potential.
机译:到目前为止完成的实验工作表明,在125托下计算出的α-γ'相边界在实验值的20%之内。但是,需要做/额外的实验工作来确定在125托时的实际边界是更接近产生白色层的条件还是不产生白色层的条件。尽管如此,初步结果表明,用于计算125托下边界的方法是合理的。随着氮化压力的降低,低扭矩氮化需要更高的临界输入氨含量(更高的氮化输入电位)。输入氨含量的改变是除与氢气相比差的氨抽出之外还降低了氨和氢气的分压的结果。尽管常压渗氮和低扭矩渗氮的渗氮表面相似,但仍有一些优点。由于在真空炉中不存在加热和冷却的蒸馏罐,因此氮化循环的转换时间更快。此外,与典型的真空炉淬火类似,通过使惰性气体在水冷式换热器中循环来实现加速冷却,真空处理产生非常纯净的起始气氛,无需进行氮气吹扫,并具有清洁的能力。在循环的氮化步骤之前,使用氢对零件表面进行处理。氢气处理可以在小于150托的条件下完成,这极大地减少了爆炸风险。低压处理还可以保持室内动态/均匀的气氛,从而无需对流风扇。尤其重要的是,真空室提供了一个非常紧密的热和大气均匀的炉子,非常适合用于氮化电位的现代仪器控制的精确功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号