...
首页> 外文期刊>High energy density physics >The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
【24h】

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums

机译:详细的配置核算(DCA)原子物理软件包在解释点火级钟罩中的能量平衡中的作用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In 2009 the National Ignition Campaign (NIC) gas-filled/capsule-imploding hohlraum energetics campaign showed good laser-hohlraum coupling, reasonably high drive, and implosion symmetry control via cross-beam transfer. There were, however, discrepancies with expectations from the standard simulation model including: the level and spectrum of the Stimulated Raman light; the tendency towards pancake-shaped implosions; and drive that exceeded predictions early in the campaign, and lagged those predictions late in the campaign. We review here the origins/development path of the " high flux model" (HFM). The HFM contains two principal changes from the standard model: 1) It uses a detailed configuration accounting (DCA) atomic physics non-local-thermodynamic-equilibrium (NLTE) model, and 2) It uses a generous electron thermal flux limiter, f=0.15, that is consistent with a non-local electron transport model. Both elements make important contributions to the HFM's prediction of a hohlraum plasma that is cooler than that predicted by the standard model, which uses an NLTE average atom approach, and a value of f=0.05 for the flux limiter. This cooler plasma is key in eliminating most of the discrepancies between the NIC data and revised expectations based on this new simulation model. The HFM had previously been successfully deployed in correctly modeling Omega Laser illuminated gold sphere x-ray emission data, and NIC empty hohlraum drive. However, when the HFM was first applied to this energetics campaign, the model lacked some credibility/acceptance compared to the standard model, because it actually worsened the discrepancy between the observed hohlraum drive for the 1. MJ class experiments performed late in the campaign and the revised expectation of higher drive based on the HFM. Essentially, the HFM was making a prediction that the laser-hohlraum coupling was less than that assumed at that time. Its credibility was then boosted when a re-evaluation of the laser light losses from the hohlraum due to laser plasma interactions matched its prediction.
机译:在2009年的全国点火运动(NIC)充气/胶囊内爆型高能能运动中,它表现出良好的激光-高能耦合性,相当高的驱动力以及通过横光束转移控制内爆对称性。但是,标准模拟模型的期望值存在差异,其中包括:受激拉曼光的水平和光谱;呈煎饼状内爆的趋势;并在战役初期推动超出预期的驱动器,而在战役后期滞后于这些预测。我们在这里回顾“高通量模型”(HFM)的起源/发展路径。 HFM与标准模型相比包含两个主要变化:1)使用详细配置核算(DCA)原子物理学非局部热力学平衡(NLTE)模型,以及2)使用慷慨的电子热通量限制器,f = 0.15,这与非局部电子传输模型一致。这两个元素均对HFM预测的比标准模型(使用NLTE平均原子方法的标准模型预测的温度低)的通量限制器的f = 0.05的值更重要的HFM预测做出了重要贡献。这种较冷的等离子体是消除NIC数据和基于此新仿真模型的修订后的期望之间的大部分差异的关键。 HFM先前已成功部署在正确建模Omega Laser照亮的金球X射线发射数据和NIC空hohlraum驱动器上的模型中。但是,当HFM首次应用于这项高能运动时,与标准模型相比,该模型缺乏一定的可信度/接受度,因为它实际上加剧了在运动后期进行的1级MJ类实验与所观察到的Holraum驱动力之间的差异。对基于HFM的更高驱动力的修订期望。本质上,HFM做出的预测是,激光-霍尔姆耦合小于当时的假设。当对因激光等离子体相互作用而导致的光斑激光损失的重新评估与其预测相符时,其可信度得到了提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号