...
首页> 外文期刊>Chemphyschem: A European journal of chemical physics and physical chemistry >Coherent Spin Manipulation in Molecular Semiconductors: Getting a Handle on Organic Spintronics
【24h】

Coherent Spin Manipulation in Molecular Semiconductors: Getting a Handle on Organic Spintronics

机译:分子半导体中的相干自旋操纵:掌握有机自旋电子学

获取原文
获取原文并翻译 | 示例

摘要

Organic semiconductors offer expansive grounds to explore fundamental questions of spin physics in condensed matter systems. With the emergence of organic spintronics and renewed interest in magnetoresistive effects, which exploit the electron spin degree of freedom to encode and transmit information, there is much need to illuminate the underlying properties of spins in molecular electronic materials. For example, one may wish to identify over what length of time a spin maintains its orientation with respect to an external reference field. In addition, it is crucial to understand how adjacent spins arising, for example, in electrostatically coupled charge-carrier pairs, interact with each other. A periodic perturbation of the field may cause the spins to precess or oscillate, akin to a spinning top experiencing a torque. The quantum mechanical characteristic of the spin is then defined as the coherence time, the time over which an oscillating spin, or spin pair, maintains a fixed phase with respect to the driving field. Electron spins in organic semiconductors provide a remarkable route to performing “hands-on” quantum mechanics since permutation symmetries are controlled directly. Herein, we review some of the recent advances in organic spintronics and organic magnetoresistance, and offer an introductory description of the concept of pulsed, electrically detected magnetic resonance as a technique to manipulate and thus characterize the fundamental properties of electron spins. Spin-dependent dissociation and recombination allow the observation of coherent spin motion in a working device, such as an organic light-emitting diode. Remarkably, it is possible to distinguish between electron and hole spin resonances. The ubiquitous presence of hydrogen nuclei gives rise to strong hyperfine interactions, which appear to provide the basis for many of the magnetoresistive effects observed in these materials. Since hyperfine coupling causes quantum spin beating in electron-hole pairs, an extraordinarily sensitive probe for hyperfine fields in such pairs is given.
机译:有机半导体为探索凝聚态系统中自旋物理学的基本问题提供了广阔的基础。随着有机自旋电子学的出现以及对磁阻效应的新兴趣,这种效应利用电子自旋自由度来编码和传输信息,因此非常需要阐明分子电子材料中自旋的基本特性。例如,人们可能希望确定自旋相对于外部参考场保持旋转取向的时间长度。另外,至关重要的是要理解例如在静电耦合的电荷-载流子对中产生的相邻自旋如何相互作用。磁场的周期性扰动可能导致自旋进动或振荡,类似于旋转陀螺承受扭矩。然后将自旋的量子力学特性定义为相干时间,即振荡自旋或自旋对相对于驱动场保持固定相位的时间。由于排列对称性是直接受控制的,因此有机半导体中的电子自旋为执行“动手”量子力学提供了一条绝好的途径。本文中,我们回顾了有机自旋电子学和有机磁阻的最新进展,并介绍了脉冲电检测磁共振的概念,作为操纵和表征电子自旋的基本特性的技术。自旋相关的解离和重组允许观察工作装置(例如有机发光二极管)中的自旋运动。显着地,可以区分电子和空穴自旋共振。氢原子的普遍存在会引起强烈的超精细相互作用,这似乎为这些材料中观察到的许多磁阻效应提供了基础。由于超精细耦合会引起电子-空穴对中的量子自旋跳动,因此,针对此类电子中的超精细场给出了非常灵敏的探针。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号