首页> 外文期刊>Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear >Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account
【24h】

Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account

机译:考虑严重塑性剪切变形的表面滚动接触疲劳裂纹萌生建模

获取原文
获取原文并翻译 | 示例
           

摘要

A new model for the prediction of rolling contact fatigue crack initiation at the surface of railway rails and wheels has been developed, which takes contact-related plasticity effects into account. The model assesses the propensity towards fatigue crack initiation based on microstructural crack paths in the severely shear-deformed, anisotropic material near the surface. The key to differentiate between situations favoring crack initiation accompanied by wear and situations where only wear prevails, is the distribution of plastic shear strain in combination with stress in a crack initiation layer at the surface, rather than the maximum values of the plastic strain or stress. The model predicts the formation of head checks at the gauge corner of rails and the corresponding damage pattern on wheels. It is parameterized based on results from a full-scale test rig experiment. The model can be coupled to multi-body systems simulations of railway vehicles to account for the effect of plastic shear deformation on rolling contact fatigue crack initiation in such simulations. This allows systematic studies of contact conditions, material properties and railway vehicle dynamics behavior with regard to rolling contact fatigue crack initiation. (C) 2016 Elsevier B.V. All rights reserved.
机译:考虑到与接触有关的塑性效应,开发了一种用于预测铁轨和车轮表面滚动接触疲劳裂纹萌生的新模型。该模型基于表面附近严重剪切变形的各向异性材料的微观结构裂纹路径,评估了疲劳裂纹萌生的可能性。区分伴随磨损的裂纹萌生的情况和仅磨损占优势的情况的关键在于,塑性剪切应变的分布与表面裂纹萌生层中的应力相结合,而不是塑性应变或应力的最大值。该模型可预测在轨距的拐角处会形成头部检查,并预测车轮上相应的损坏方式。它是根据全面测试平台实验的结果进行参数化的。该模型可以耦合到铁路车辆的多体系统仿真中,以考虑塑性剪切变形对此类仿真中滚动接触疲劳裂纹萌生的影响。这允许系统地研究接触条件,材料特性以及有关滚动接触疲劳裂纹萌生的铁路车辆动力学行为。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号