...
首页> 外文期刊>Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear >A friction model for loading and reloading effects in deep drawing processes
【24h】

A friction model for loading and reloading effects in deep drawing processes

机译:拉深过程中加载和重新加载效果的摩擦模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Deep drawing is one of the most widely-used forming processes to manufacture automotive body parts from sheet metal. In order to simulate deep drawing processes, a finite element (FE) method was used to predict formability. The accuracy of the FE simulation depends on the material models, numerical techniques, and contact algorithms. Despite the fact that the contact conditions between the tool and sheet material influences the coefficient of friction in forming processes, the coefficient of friction is often treated as a constant Coulomb friction coefficient in FE simulations. However, a friction model based on local contact conditions and surface topography is required to improve forming predictability. There is growing interest in developing contact models to predict the nature of friction conditions for use in FE calculations. In deep drawing processes, the sliding contact predominantly occurs in the blank holder region between the tool and sheet material. The contact pressure in the blank holder is non-uniform due to bending and material compression which vary depending on tool geometry. The sheet metal surface is subjected to repeated contact during sliding, which in turn affects the local friction conditions. The objective of this paper is to develop a sliding friction model for mixed modes of surface deformation. The deterministic approach used in the current model includes the roughness of both the sheet material and the tool. The sheet material is subject to an asperity flattening process. Further, the tool surface indents into the sheet material under normal loading. The geometry of the asperities is characterized by an elliptical paraboloid shape to better calculate the load-dependence of friction. The model has been compared with data from experiments using a rotational friction tester under multiple loading conditions.
机译:拉深是使用钣金制造汽车车身零件的最广泛使用的成型工艺之一。为了模拟深冲压过程,使用了有限元(FE)方法来预测可成形性。有限元仿真的准确性取决于材料模型,数值技术和接触算法。尽管工具和板材之间的接触条件会影响成形过程中的摩擦系数,但在有限元模拟中,摩擦系数通常被视为恒定的库仑摩擦系数。但是,需要基于局部接触条件和表面形貌的摩擦模型来提高成形的可预测性。对开发接触模型以预测用于FE计算的摩擦条件的性质的兴趣日益浓厚。在深冲过程中,滑动接触主要发生在工具和板材之间的毛坯夹持器区域。由于弯曲和材料压缩(取决于工具几何形状)的不同,毛坯夹持器中的接触压力是不均匀的。钣金表面在滑动过程中会反复接触,进而影响局部摩擦条件。本文的目的是为表面变形的混合模式建立滑动摩擦模型。当前模型中使用的确定性方法包括板材和工具的粗糙度。片材经受粗糙平坦化处理。此外,在正常载荷下工具表面会凹入片材中。凹凸的几何形状的特征是椭圆抛物面形状,可以更好地计算摩擦的载荷相关性。该模型已经与使用旋转摩擦测试仪在多种负载条件下的实验数据进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号