...
首页> 外文期刊>Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear >Frictional performance and near-surface evolution of nanocrystalline Ni-Fe as governed by contact stress and sliding velocity
【24h】

Frictional performance and near-surface evolution of nanocrystalline Ni-Fe as governed by contact stress and sliding velocity

机译:接触应力和滑动速度控制的纳米晶Ni-Fe的摩擦性能和近表面演化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

While early reports on the wear performance of nanocrystalline alloys have suggested enhanced behavior consistent with their higher hardness compared to conventional microcrystalline alloys, there is still limited understanding of the mechanisms and limits of this enhanced behavior. In the present study, we examine the frictional response of a nanocrystalline Ni-20Fe alloy with 34-nm average grain size compared to the same film annealed to an average grain size of 500-nm. We examine the sliding friction performance of these films in contact with a 3.125 mm diameter Si_3N_4 spherical counterface under a range of normal forces (0.1-1.0 N) and sliding speeds (0.25-3.75 mm/s) in a non-oxidizing dry nitrogen environment. Under all conditions, the initial break-in coefficient of friction (COF) starts high, μ ≈ 0.5-0.8, typical of uncoated metallic friction. However, there is an evolution in the COF which depends on normal force and sliding speed. At low sliding speeds (or normal forces), the steady-state COF decreases to μ ≈ 0.2 whereas at higher sliding speeds and normal forces, the steady-state COF remains high at μ ≈ 0.8. Focused ion beam cross-sectioning and TEM imaging reveal that in all cases, a multilayer substructure is formed in the deforming film: a refined ultrananocrystalline layer at the top surface, over a region of coarsened grains, atop the parent nanocrystalline alloy. The key distinction between the high-friction and low-friction conditions appears to lie in the triggering of a delamination process: high-friction conditions are associated with a thickening of the UNC layer through repeated delamination, whereas low-friction conditions are associated with a thin UNC layer that does not delaminate. Finite element analysis is used to aid in the understanding of how the magnitude and location of stresses drive these two distinct regimes.
机译:尽管有关纳米晶合金磨损性能的早期报告表明,与常规的微晶合金相比,其行为与更高的硬度相一致,但对这种行为的机理和局限性仍然知之甚少。在本研究中,我们检查了平均晶粒尺寸为34 nm的纳米晶Ni-20Fe合金与退火至平均晶粒尺寸为500 nm的同一膜相比的摩擦响应。我们在非氧化干燥氮气环境下,在一定的法向力(0.1-1.0 N)和滑动速度(0.25-3.75 mm / s)的条件下,研究了与3.125 mm直径的Si_3N_4球形对接面接触的这些薄膜的滑动摩擦性能。在所有条件下,初始磨合摩擦系数(COF)都很高,μ≈0.5-0.8,这是无涂层金属摩擦的典型特征。但是,COF的变化取决于法向力和滑动速度。在低滑动速度(或法向力)下,稳态COF降低至μ≈0.2,而在较高的滑动速度和法向力下,稳态COF保持高在μ≈0.8。聚焦的离子束横截面和TEM成像表明,在所有情况下,变形膜中都形成了多层子结构:在母体纳米晶合金顶上的粗化晶粒区域上方,在顶表面形成了精制的超纳米晶层。高摩擦条件和低摩擦条件之间的主要区别似乎在于触发分层过程:高摩擦条件与通过反复分层而使UNC层变厚相关,而低摩擦条件与摩擦相关。不会分层的薄UNC层。有限元分析用于帮助理解应力的大小和位置如何驱动这两个不同的状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号