首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene-polymer nanocomposite
【24h】

Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene-polymer nanocomposite

机译:氢官能化对石墨烯断裂强度和石墨烯-聚合物纳米复合材料界面性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Using molecular dynamics and classical continuum concepts, we investigated the effects of hydrogen functionalization on the fracture strength of graphene and also on the interfacial properties of graphene-polymer nanocomposite. Moreover, we developed an atomistic model to assess the temperature and strain rate dependent fracture strength of functionalized graphene along various chiral directions. Results indicate that hydrogen functionalization at elevated temperatures highly degrade the fracture strength of graphene. The functionalization also deteriorates the interfacial strength of graphene-polymer nanocomposite. Near-crack-tip stress distribution depicted by continuum mechanics can be successfully used to investigate the impact of hydrogen passivation of dangling carbon bonds on the strength of graphene. We further derived a continuum-based model to characterize the non-bonded interaction of graphene-polymer nanocomposite. These results indicate that classical continuum concepts are accurate even at a scale of several nanometers. Our work provides a remarkable insight into the fracture strength of graphene and graphene-polymer nanocomposites, which are critical in designing experimental and instrumental applications. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved.
机译:使用分子动力学和经典连续谱概念,我们研究了氢官能化对石墨烯断裂强度以及石墨烯-聚合物纳米复合材料界面性能的影响。此外,我们开发了一个原子模型来评估功能性石墨烯沿各种手性方向的温度和应变速率依赖性断裂强度。结果表明,高温下的氢官能化会大大降低石墨烯的断裂强度。官能化还恶化了石墨烯-聚合物纳米复合材料的界面强度。连续力学描述的近裂纹尖端应力分布可成功用于研究悬空碳键的氢钝化对石墨烯强度的影响。我们进一步推导了一个基于连续体的模型来表征石墨烯-聚合物纳米复合材料的非键相互作用。这些结果表明,即使在几纳米的尺度上,经典的连续谱概念也是准确的。我们的工作为石墨烯和石墨烯聚合物纳米复合材料的断裂强度提供了出色的见识,而断裂强度在设计实验和仪器应用中至关重要。 Crown版权所有(C)2015,由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号