...
首页> 外文期刊>Proceedings of the American Mathematical Society >SHARP PHASE TRANSITION THRESHOLDS FOR THE PARIS HARRINGTON RAMSEY NUMBERS FOR A FIXED DIMENSION
【24h】

SHARP PHASE TRANSITION THRESHOLDS FOR THE PARIS HARRINGTON RAMSEY NUMBERS FOR A FIXED DIMENSION

机译:固定尺寸的巴黎·哈林顿·拉姆西数的锐利相变阈值

获取原文
获取原文并翻译 | 示例
           

摘要

This article is concerned with investigations on a phase transition which is related to the (finite) Ramsey theorem and the Paris-Harrington theorem. For a given number-theoretic function g, let R_c~d(g)(k) be the least natural number R such that for all colourings P of the d-element subsets of {0,... , R - 1} with at most c colours there exists a subset H of {0, , R - 1} such that P has constant value on all d-element subsets of H and such that the cardinality of H is not smaller than max{k,g(min(H))}. If g is a constant function with value e, then R_c~d(g)(k) is equal to the usual Ramsey number R_c~d(max{e, k}); and if g is the identity function, then R_c~d(g)(k) is the corresponding Paris-Harrington number, which typically is much larger than R_c~d(k). In this article we give for all d ≥ 2 a sharp classification of the functions g for which the function m → R_m~d(g)(m) grows so quickly that it is no longer provably total in the subsystem of Peano arithmetic, where the induction scheme is restricted to formulas with at most (d — 1)-quantifiers. Such a quick growth will in particular happen for any function g growing at least as fast as i → ε ? log(…(log(i)…) (where ε > 0 is fixed) but not for the function (d-1)-times g(i) = 1/(log~*(i)) ? log(… (log(i)…). (Here log~* denotes the functional inverse (d-1)—times of the tower function.) To obtain such results and even sharper bounds we employ certain suitable transfinite iterations of nonconstructive lower bound functions for Ramsey numbers. Thereby we improve certain results from the article A classification of rapidly growing Ramsey numbers (PAMS 132 (2004), 553-561) of the first author. which were obtained by employing constructive ordinal partitions.
机译:本文涉及对与(有限)Ramsey定理和Paris-Harrington定理有关的相变的研究。对于给定的数论函数g,令R_c〜d(g)(k)为最小自然数R,使得对于{0,...,R-1}的d元素子集的所有着色P最多有c种颜色存在{0,,R-1}的子集H,使得P在H的所有d元素子集中具有恒定的值,并且H的基数不小于max {k,g(min (H))}。如果g是值为e的常数函数,则R_c〜d(g)(k)等于通常的Ramsey数R_c〜d(max {e,k});如果g是恒等函数,则R_c〜d(g)(k)是相应的Paris-Harrington数,通常比R_c〜d(k)大得多。在本文中,对于所有d≥2,我们对函数g进行了清晰的分类,其中函数m→R_m〜d(g)(m)增长得如此之快,以至于在Peano算术的子系统中,它不再是可证明的总数。归纳方案仅限于具有(d_1)个量词的公式。这样的快速增长将特别发生在任何函数g的增长速度至少与i→ε? log(…(log(i)…)(其中ε> 0是固定的),但不适用于函数(d-1)-g(i)= 1 /(log〜*(i))?log(…( log(i)…)。(这里log〜*表示功能逆(d-1)-塔函数的时间。)为了获得这样的结果,甚至更尖锐的边界,我们对Ramsey采用了一些合适的非构造下界函数的超限迭代因此,我们改善了第一篇作者的快速增长的拉姆齐数的分类(PAMS 132(2004),553-561)的某些结果,该分类是通过使用构造序数分区获得的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号