首页> 外文期刊>Transplantation: Official Journal of the Transplantation Society >Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies.
【24h】

Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies.

机译:人β细胞前体在免疫隔离装置中成熟为功能性产生胰岛素的细胞:对糖尿病细胞治疗的意义。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

BACKGROUND: Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. METHODS: Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. RESULTS: Encapsulated human islet-like cell clusters survived, replicated, andacquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. CONCLUSIONS: We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.
机译:背景:胰岛移植受限于对慢性免疫抑制的需求以及供体组织的匮乏。随着人类β细胞新来源的发展(例如干细胞来源的组织),将其移植到耐用的设备中可以消除免疫抑制的需要,同时还可以保护患者免受致癌性的任何风险。在这里,我们研究了(1)封装的人β细胞及其祖细胞的存活和功能,以及(2)封装的鼠β细胞在同种和自身免疫环境中的植入。方法:将人类胰岛和人类胎儿胰岛样细胞簇包裹在聚四氟乙烯装置(TheraCyte)中,并移植到免疫缺陷小鼠中。通过免疫组织化学,循环的人C肽水平和血糖水平测量移植物的存活和功能。生物发光成像用于监测封装的新生鼠胰岛。结果:封装的人类胰岛样细胞簇得以存活,复制并获得了足以缓解糖尿病小鼠高血糖的葡萄糖反应性胰岛素分泌水平。封装的鼠类新生儿胰岛的生物发光成像显示了细胞死亡然后再生长的动态过程,从而导致了强大的同种异体移植长期存活。此外,在I型糖尿病的非肥胖糖尿病(NOD)小鼠模型中,封装的原代β细胞可改善糖尿病,而不会刺激可检测的T细胞反应。结论:我们首次证明了人类β细胞的功能与在耐用的免疫保护装置中的包囊相容。此外,我们的研究表明,在终末分化之前封装β细胞将是成功的基于糖尿病的新细胞疗法,例如干细胞疗法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号