...
首页> 外文期刊>Tribology letters >Thermal-Induced Wear Mechanisms of Sheet Nacre in Dry Friction
【24h】

Thermal-Induced Wear Mechanisms of Sheet Nacre in Dry Friction

机译:干燥条件下片状珍珠母的热致磨损机理

获取原文
获取原文并翻译 | 示例
           

摘要

Sheet nacre is a natural biocomposite with a multiscale structure including a mineral phase of calcium carbonate (97 wt.%) and two organic matrices (3 wt.%). The mineral phase is constituted by an arrangement of CaCO_3 biocrystal nanograins (ca 40 nm in size) drowned in an "intracrystalline" organic matrix (4 nm thick) in order to form a microsized flat organomineral aragonite platelet. These platelets are themselves surrounded by an "inter-crystalline" organic matrix (40 nm thick) building up a very tough materials. This microarchitecture referred to as "bricks and mortar" nacre structure, is mainly studied for the creation of new organic/inorganic hybrid materials. Currently, only little is known about the nacre mechanical behaviour under dynamical loading and more particularly under tribological conditions which involve shocks and thermal effects simultaneously. This paper brings out the thermal-induced damage mechanisms effect on the wear of sheet nacre by the assessment of the thermal component of the friction with a scanning thermal microscope. Results reveal that the mean contact pressure is the main driving force involved in the degradation of the organic constituents. For the lowest mean contact pressure (<0.4 MPa), wear is rather weak because the friction-induced thermal component is not sufficient for degrading the organic matrices. In contrast, beyond 0.4 MPa, the friction-induced contact temperature rises up over the melting point of the organic matrices, and may even reach the temperature of the aragonite-calcite phase transformation increasing dramatically the wear of sheet nacre.
机译:珍珠层片是一种天然生物复合材料,具有多级结构,包括碳酸钙(97重量%)的矿物相和两种有机基质(3重量%)。矿物相由淹没在“晶体内”有机基质(厚度为4 nm)中的CaCO_3生物晶体纳米颗粒(尺寸约40 nm)构成,以形成微米级的扁平有机矿物文石小片。这些血小板本身被“晶间”有机基质(40 nm厚)包围,形成了非常坚硬的材料。这种微体系结构被称为“砖和砂浆”珍珠质结构,主要用于创建新的有机/无机杂化材料。目前,关于珍珠质在动态载荷下的力学行为知之甚少,尤其是在摩擦条件下同时涉及冲击和热效应。本文通过用扫描热显微镜评估摩擦的热成分,揭示了热致损伤机制对珍珠层磨损的影响。结果表明,平均接触压力是有机成分降解的主要驱动力。对于最低的平均接触压力(<0.4 MPa),磨损相当弱,因为摩擦引起的热成分不足以降解有机基质。相反,超过0.4 MPa时,由摩擦引起的接触温度在有机基体的熔点之上升高,甚至可能达到文石-方解石相变的温度,从而显着增加珍珠层的磨损。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号