...
首页> 外文期刊>Topics in Catalysis >Control of metal dispesion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts
【24h】

Control of metal dispesion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts

机译:通过改变负载的钴费-托催化剂的固态化学来控制金属的分布和结构

获取原文
获取原文并翻译 | 示例
           

摘要

Controlling preparation variables in supported cobalt Fischer-Tropsch catalysts has a sramatic effect on the dispesion and distribution of cobalt,and determines how active and selective the resulting catalyst will be.We detail specific examples of catalyst synthesis strategies for modifying interactions between the support and the cobalt precursor,promoting reduciton,stabilizing catalysts to high-termperatue treatments,minimizing deleterious support emtalinteractions,and controlling the distribution of cobalt on large support particles.It is important to optimize the support metal interaction strength,so that it is strong enough to obtain good dispersion but not too strong to prevent low temperature reducition.We show examples in which formation of surface complexes and epitaxial matching of precursor and support structures improves dispersion dramatically.Reduction promoters can help in those cases where support-precursor interactions are too strong.We show how substitutions of silicon into a titania lattice stabilizes surface area and retards formation at high oxidative coke removal is nessary.in addition,surface treatment of TiO_2 with an irreducible oxide like ZrO_2 can inhibit deleterious support interactions that can block surface cobalt sites.selectivity can also be dramatically altered by catalyst synthesis.We illusrate a case of large (2mm)SiO_2 particles onto which cobalt can be added eithr uniformly or in discrete eggshells,with the eggshell catalysts having substantially higher C_5+ selectivity.These approaches can lead to optimal fischer-Tripsch catalysts with high activity and C_5+ selectivity,good physical integrity, and a long life.
机译:控制负载型钴费-托催化剂中的制备变量对钴的分布和分布具有明显的影响,并决定了所得催化剂的活性和选择性。我们详细介绍了一些催化剂合成策略的具体实例,这些策略用于改变载体与催化剂之间的相互作用。钴前体,促进还原,稳定催化剂以进行高温处理,使有害的载体金属相互作用最小化,并控制钴在大载体颗粒上的分布。优化载体金属的相互作用强度非常重要,以使其强度足以获得良好的分散但不能太强以至于不能防止低温还原我们展示了一些例子,其中表面配合物的形成以及前驱体和支撑结构的外延匹配极大地改善了分散性。还原促进剂可以在支撑前体相互作用太强的情况下提供帮助。硅粉如何替代将n变成二氧化钛晶格可稳定表面积并延迟高氧化焦炭去除时的形成。此外,用不可还原的氧化物(如ZrO_2)对TiO_2进行表面处理可抑制有害的相互作用,从而阻止表面钴的形成。选择性也可以显着改变我们举例说明了一个大(2mm)SiO_2颗粒的情况,可以在其中均匀地或在离散的蛋壳中均匀地添加钴,而蛋壳催化剂的C_5 +选择性要高得多。活性和C_5 +选择性,良好的身体完整性和长寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号