...
首页> 外文期刊>Tree Physiology >Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration.
【24h】

Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration.

机译:常绿橡树中的气体交换和叶片老化:叶片碳平衡和冠层呼吸的原因和后果。

获取原文
获取原文并翻译 | 示例
           

摘要

Leaves of Mediterranean evergreens experience large variations in gas exchange rates over their life span due to aging and seasonally changing environmental conditions. Accounting for the changing respiratory physiology of leaves over time will help improve estimations of leaf and whole-plant carbon balances. Here we examined seasonal variations in light-saturated net CO2 assimilation (Amax), dark respiration (Rd) and the proportional change in Rd per 10 degrees C change in temperature (Q10 of Rd) in previous-year (PY) and current-year (CY) leaves of the broadleaved evergreen tree Quercus ilex L. Amax and Rd were lower in PY than in CY leaves. Differences in nitrogen between cohorts only partly explained such differences, and rates of Amax and Rd expressed per unit of leaf nitrogen were still significantly different between cohorts. The decline in Amax in PY leaves did not result in the depletion of total non-structural carbohydrates, whose concentration was in fact higher in PY than CY leaves. Leaf-level carbon balance modeled from gas exchange data was positive at all ages. Q10 of Rd did not differ significantly between leaf cohorts; however, failure to account for distinct Rd between cohorts misestimated canopy leaf respiration by 13% across dates when scaling up leaf measurements to the canopy. In conclusion, the decline in Amax in old leaves that are close to or exceed their mean life span does not limit the availability of carbohydrates, which are probably needed to sustain new growth, as well as Rd and nutrient resorption during senescence. Accounting for leaf age as a source of variation of Rd improves the estimation of foliar respiratory carbon release at the stand scale.
机译:由于衰老和季节性变化的环境条件,地中海常绿植物的叶子在其生命周期内会经历很大的气体交换率变化。解释叶片随时间变化的呼吸生理状况,将有助于改善对叶片和整个植物碳平衡的估计。在这里,我们研究了光饱和净CO 2 同化( A max ),暗呼吸( R d )和温度每变化10摄氏度 R d 的比例变化( Q 10 R d )常绿阔叶树 Quercus ilex 的前一年(PY)和当年(CY)叶> L. PY中的 A max 和 R d 低于CY叶片。队列之间的氮差异仅部分解释了这种差异,并且 A max 和 R d 的比率以单位表示队列之间的叶氮含量仍显着不同。 PY叶片中 A max 的下降并未导致总非结构性碳水化合物的消耗,事实上,其在PY中的浓度高于CY叶片。根据气体交换数据模拟的叶片水平碳平衡在各个年龄段均为正值。叶群的 Q 10 和 R d 没有显着差异;但是,在按比例增加对冠层的叶面积测量时,未能考虑队列之间不同的 R d 导致整个日期误将冠层叶呼吸估计为13%。总之,接近或超过其平均寿命的老叶中 A max 的下降并不限制碳水化合物的供应,而碳水化合物可能是维持新的碳水化合物所必需的生长,衰老期间的 R d 和养分吸收。将叶龄作为 R d 变异的来源,可以提高林分尺度下叶片呼吸碳释放的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号