首页> 外文期刊>Chemical Physics: A Journal Devoted to Experimental and Theoretical Research Involving Problems of Both a Chemical and Physical Nature >First-principles based matrix Green's function approach to molecular electronic devices: general formalism
【24h】

First-principles based matrix Green's function approach to molecular electronic devices: general formalism

机译:基于第一原理的分子电子器件矩阵格林函数方法:一般形式主义

获取原文
获取原文并翻译 | 示例
           

摘要

Transport in molecular electronic devices is different from that in semiconductor mesoscopic devices in two important aspects: (1) the effect of the electronic structure and (2) the effect of the interface to the external contact. A rigorous treatment of molecular electronic devices will require the inclusion of these effects in the context of an open system exchanging particle and energy with the external environment. This calls for combining the theory of quantum transport with the theory of electronic structure starting from the first-principles. We present a self-consistent yet tractable matrix Green's function (MGF) approach for studying transport in molecular electronic devices, based on the non-equilibrium Green's function formalism of quantum transport and the density functional theory (DFT) of electronic structure using local orbital basis sets. By separating the device rigorously (within an effective single-particle theory) into the molecular region and the contact region, we can take full advantage of the natural spatial locality associated with the metallic screening in the electrodes and focus on the physical processes in the finite molecular region. This not only opens up the possibility of using the existing well-established technique of molecular electronic structure theory in transport calculations with little change, but also allows us to use the language of qualitative molecular orbital theory to interpret and rationalize the results of the computation. We emphasize the importance of the self-consistent charge transfer and voltage drop on the transport characteristics and describe the self-consistent formulation for both device at equilibrium and device out of equilibrium. For the device at equilibrium, our method provides an alternative approach for solving the molecular chemisorption problem. For the device out of equilibrium, we show that the calculation of elastic current transport through molecules, both conceptually and computationally, is no more difficult than solving the chemisorption problem.
机译:分子电子器件中的传输与半导体介观器件中的传输在两个重要方面不同:(1)电子结构的作用和(2)界面与外部触点的作用。在开放系统与外部环境交换粒子和能量的情况下,对分子电子设备的严格处理将需要包括这些效应。这要求从第一原理开始将量子传输理论与电子结构理论结合起来。我们基于量子运输的非平衡格林函数形式和电子结构的密度泛函理论(DFT),使用局部轨道基础,提出了一种自洽但易于处理的矩阵格林函数(MGF)方法,用于研究分子电子器件中的迁移。套。通过将器件严格地(在有效的单粒子理论内)划分为分子区域和接触区域,我们可以充分利用与电极中金属屏蔽相关的自然空间局部性,并专注于有限的物理过程分子区域。这不仅打开了在迁移计算中使用现有的分子电子结构理论的成熟技术而几乎没有变化的可能性,而且还使我们能够使用定性分子轨道理论的语言来解释和合理化计算结果。我们强调自洽电荷转移和电压降对传输特性的重要性,并描述了处于平衡状态的器件和处于非平衡状态的器件的自洽形式。对于处于平衡状态的设备,我们的方法提供了解决分子化学吸附问题的另一种方法。对于不平衡的设备,我们表明从概念上和计算上,通过分子的弹性电流传输的计算都比解决化学吸附问题困难得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号