首页> 外文学位 >Molecular self-assembly approaches for supramolecular electronic and organic electronic devices.
【24h】

Molecular self-assembly approaches for supramolecular electronic and organic electronic devices.

机译:超分子电子和有机电子设备的分子自组装方法。

获取原文
获取原文并翻译 | 示例

摘要

Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.
机译:分子自组装代表了一种有效的自下而上的策略,可生成半导体pi共轭材料的结构明确的聚集体。通过分子工程和新型材料加工来调节化学结构,分子间相互作用和纳米结构的能力使得可以定制大量前所未有的特性,例如电荷传输,能量转移和光收集。这种方法不仅有益于基于块状材料的传统电子设备,而且还产生了一个新的研究领域,即所谓的“超分子电子学”,其中电子设备由单个的超分子纳米结构构成,其尺寸在几百纳米的范围内。我的工作将分子自组装与几种新颖的材料加工技术结合在一起,以控​​制不同类型的π共轭材料的有机半导体纳米结构的成核和生长。通过使用氢键和pi-pi堆叠来调整分子之间的相互作用,可以在溶液中制备具有可调大小的半导体纳米片和纳米线。通过印刷和化学模板方法,将这些超分子纳米结构进一步图案化并排列在固体基质上。控制表面上不同组织层次的能力为研究其结构诱导的电子特性提供了重要平台。除了使用分子自组装来创建不同的有机纳米结构外,还通过在表面上自发化学吸附形成的功能性自组装单分子层(SAM)用于调整有机太阳能电池的界面特性。当使用适当的SAM来优化接触性能以进行高效电荷收集时,设备的性能将大大提高。

著录项

  • 作者

    Yip, Hin-Lap.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Chemistry Organic.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:38:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号