首页> 外文学位 >Two-dimensional molecular self-assembly approaches to nanoelectronics.
【24h】

Two-dimensional molecular self-assembly approaches to nanoelectronics.

机译:纳米电子学的二维分子自组装方法。

获取原文
获取原文并翻译 | 示例

摘要

The use of two-dimensional molecular self-assembly approaches to fabricate nanoelectronics devices and their circuitries were evaluated. In particular, we examined the feasibility of using DNA-based nanofabrication as an alternative manufacturing method to conventional top-down lithography and the possibility of using molecules as tailorable electronic elements in future integrated circuits.; We demonstrated the potential for exploiting the programmability of DNA templates to lay out a complex array of prototype nanocomponents with nanometer scale precision by exploiting the sequence-specific interactions and selectivity of DNA. This technique was used to assemble one or two different types of DNA-coated gold nanoparticles into regular arrays on a common structure by self-assembling to a 2D DNA scaffolding. We expanded the capability of a DNA template as a starting material to grow a 2D array of metallic nanowires with controllable inter-wire spacing. Electrical characterizations through nanowires contacted by narrow, e-beam patterned electrodes show single-electron tunneling phenomena at room temperature due to granular structures of the nanowires. In additional to the fact that the electronic properties of these templated nanowires could have applications to single electronic devices, the passive and low-leakage electrical properties of the DNA template further suggest the compatibility of the electrical and chemical environment of the DNA template for nanoelectric fabrication processes.; We explored the potential of using self-assembled monolayers (SAMs) composed organic molecules as electronic components. We conducted a basic study of electrical transport in alkanethiol SAMs with well-known tunneling characteristics and establish a reliable and effective method to electrically probe the molecules of interest using bilayer molecular junction which utilizes the Hg drop contact. The currents and breakdown voltages were found to exhibit a bias asymmetry due to the dissimilar contact electrodes. The overall electrical transport of alkanethiol junctions over a wide range of molecular chain-lengths and bias ranges were observed to be well-behaved and consistent with electronic tunneling. We also investigated and modeled the novel and inadequately understood negative differential resistance (NDR) phenomena associated with 4-[[2-amino-5-nitro-4-(phenylethynyl)phenyl]ethynyl] benzenethiol or OPE molecule. We systematically probed the time-dependence of the electrical behavior of bilayer molecular junctions fabricated from OPE and alkanethiol SAMs. The study led to the conclusion that the NDR is caused by slow charge capture during the current-voltage sweep and the resultant effects on electron tunneling through the junction, which has important implications for the understanding and possible use of such molecular junctions.
机译:使用二维分子自组装方法来制造纳米电子器件及其电路进行了评估。特别是,我们研究了使用基于DNA的纳米加工作为传统的自上而下光刻技术的替代制造方法的可行性,以及在未来的集成电路中使用分子作为可定制电子元件的可能性。我们展示了利用DNA模板的可编程性,通过利用DNA的序列特异性相互作用和选择性,以纳米级精度布置复杂的原型纳米组件阵列的潜力。通过自组装到2D DNA支架上,该技术用于将一种或两种不同类型的涂有DNA的金纳米颗粒组装成规则的阵列,并具有相同的结构。我们扩展了DNA模板作为起始材料的能力,以生长具有可控线间间距的金属纳米线2D阵列。由于纳米线的颗粒结构,通过与狭窄的电子束构图的电极接触的纳米线的电学表征在室温下显示出单电子隧穿现象。除了这些模板化纳米线的电子特性可以应用于单个电子设备这一事实之外,DNA模板的无源和低泄漏电学特性进一步表明了用于纳米电制造的DNA模板的电学和化学环境的兼容性。过程。我们探索了使用由有机分子组成的自组装单分子膜(SAMs)作为电子组件的潜力。我们对具有众所周知的隧穿特性的链烷硫醇SAM中的电传输进行了基础研究,并建立了可靠且有效的方法,利用利用Hg液滴接触的双层分子结来电探测感兴趣的分子。由于接触电极的不同,发现电流和击穿电压表现出偏置不对称性。观察到烷硫醇键合在整个分子链长度和偏置范围内的整体电传输行为良好,并且与电子隧穿一致。我们还调查和建模与4-[[[2-氨基-5-硝基-4-(苯基乙炔基)苯基]乙炔基]苯硫酚或OPE分子相关的新颖且了解不足的负差分电阻(NDR)现象。我们系统地研究了由OPE和链烷硫醇SAMs制备的双层分子结的电行为的时间依赖性。该研究得出的结论是,NDR是由电流-电压扫描期间的缓慢电荷捕获以及由此对通过结的电子隧穿的影响所引起的,这对于理解和可能使用此类分子结具有重要意义。

著录项

  • 作者

    Le, John Duc.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号