首页> 外文期刊>Surface & Coatings Technology >Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coatings system performance under cyclic oxidation conditions
【24h】

Influence of electron beam physical vapor deposited thermal barrier coating microstructure on thermal barrier coatings system performance under cyclic oxidation conditions

机译:电子束物理气相沉积热障涂层微观结构对循环氧化条件下热障涂层系统性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The lifetimes of electron beam physical vapor deposited (EB-PVD) thermal barrier coating (TBC) systems with three different microstructures of the Y{sub}2O{sub}3-stabilized ZrO{sub}2 (YSZ) ceramic top layer were investigated in 1 h thermal cycles at 1100 and 1150℃ in flowing oxygen. Single crystal alloys CMSX-4 and Rene N5 that had been coated with an EB-PVD NiCoCrAlY bond coat were chosen as substrate materials. At 1150℃, all samples failed after 80-100 1 h cycles, predominantly at the bond coat-alumina interface after cooling down from test temperature. The alumina scale remained adherent to the YSZ after spallation. Despite the different YSZ microstructures, no clear tendency regarding differences in spallation behavior were observed at 1150℃. At 1100℃ the minimum lifetime was 750 1 h cycles for CMSX-4, whereas the first Rene N5 specimen failed after 1750 1 h cycles. The longest TBC lifetime on CMSX-4 substrates was 1250 1 h cycles, whereas the respective Rene N5 specimens have not yet failed after 2300 1 h cycles. The failure mode at 1100℃ was identical to that at 1150℃, i.e. the TBC spalled off the surface exposing bare metal after cooling. Even though not all specimens have failed to date, the available results at 1100℃ suggested that both the substrate alloy chemistry and the YSZ microstructure significantly affect the spallation resistance of the TBC.
机译:研究了具有Y {sub} 2O {sub} 3稳定化ZrO {sub} 2(YSZ)陶瓷顶层三种不同结构的电子束物理气相沉积(EB-PVD)热障涂层(TBC)系统的寿命在流动的氧气中,在1100和1150℃下进行1小时的热循环。选择已涂有EB-PVD NiCoCrAlY粘结涂层的单晶合金CMSX-4和Rene N5作为基材。在1150℃时,所有样品在80-100 1 h循环后均失效,主要是从测试温度冷却下来后在粘结涂层-氧化铝界面处。散裂后,氧化铝鳞片仍粘附于YSZ。尽管YSZ的微观结构不同,但在1150℃下没有观察到关于剥落行为差异的明显趋势。在1100℃时,CMSX-4的最小寿命为750 1 h周期,而第一批Rene N5标本在1750 1 h周期后失效。在CMSX-4基材上,最长的TBC寿命为1250个1小时循环,而各个Rene N5标本在2300个1小时循环后仍未失效。 1100℃的破坏模式与1150℃的破坏模式相同,即TBC在冷却后从表面剥落而暴露出裸露的金属。即使不是所有的样品都没有失效,但在1100℃下可获得的结果表明,基底合金的化学性质和YSZ的微观结构都显着影响了TBC的抗剥落性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号