...
首页> 外文期刊>Surface & Coatings Technology >Effects of nitrogen content on nanostructure evolution, mechanical behaviors and thermal stability in Ti-B-N thin films
【24h】

Effects of nitrogen content on nanostructure evolution, mechanical behaviors and thermal stability in Ti-B-N thin films

机译:氮含量对Ti-B-N薄膜纳米结构演变,力学行为和热稳定性的影响

获取原文
获取原文并翻译 | 示例

摘要

Several thin films of Ti-B-N with different N contents were deposited at 500 degrees C on Si (100) substrate by reactive unbalanced dc magnetron sputtering, followed by vacuum annealed at 600, 800 and 1000 degrees C, respectively. The effect of nitrogen content on microstructure, mechanical behaviors and thermal stability was investigated by X-ray diffraction (XRD), plan-view high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) and microindentation methods. The results indicated that nitrogen content had a great effect on phase configuration, microstructure and the corresponding mechanical behaviors. An amorphous (a-) Ti-TiB2 compound thin film which consists of Ti and TiB2 with a low hardness value was formed without nitrogen doped. Addition of small amount of nitrogen (10 at.% N in this study) produced nanocomposite nanocrystalline (nc-) Ti(N)/a-TiB2 thin films by way of activating phase segregation. Increasing nitrogen content accelerated further segregation of phase, accompanied with formation of nanocomposite nc-TiN/a-TiB2 thin films and fast increase of microhardness value. A maximum microhardness value of about 52 GPa was obtained at TiB0.52N0.63. Further increase of N content accelerated formation of BN bonding, followed by formation of nc-TiN/a-TiB2/a-BN thin films and fast decrease of microhardness value. The residual stress was not consistent with the microhardness, and showed linear increase with increasing N content. The thermal stability of Ti-B-N thin films strongly depended on microstructure and phase configuration. A high thermal stability usually occurred at an optimum composition which had a high microhardness value. (c) 2006 Elsevier B.V. All rights reserved.
机译:通过反应性不平衡直流磁控溅射在500摄氏度下在Si(100)衬底上沉积了几种不同N含量的Ti-B-N薄膜,然后分别在600、800和1000摄氏度下进行真空退火。通过X射线衍射(XRD),平面图高分辨率透射电子显微镜(HRTEM)和X射线光电子能谱(XPS)以及显微压痕方法研究了氮含量对显微组织,力学行为和热稳定性的影响。结果表明,氮含量对相结构,显微组织和相应的力学行为有很大的影响。在不掺杂氮的情况下,形成由低硬度值的Ti和TiB 2组成的非晶(a-)Ti-TiB 2复合薄膜。通过激活相分离,添加少量氮(在本研究中为10 at。%N)可制得纳米复合纳米晶(nc-)Ti(N)/ a-TiB2薄膜。氮含量的增加促进了相的进一步偏析,同时形成了纳米复合的nc-TiN / a-TiB2薄膜和显微硬度值的快速增加。在TiB0.52N0.63处获得约52 GPa的最大显微硬度值。 N含量的进一步增加促进了BN键的形成,随后形成了nc-TiN / a-TiB2 / a-BN薄膜,并且显微硬度值快速降低。残余应力与显微硬度不一致,并且随着氮含量的增加呈线性增加。 Ti-B-N薄膜的热稳定性在很大程度上取决于微观结构和相结构。通常在具有高显微硬度值的最佳组成下会出现高热稳定性。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号