...
首页> 外文期刊>Theoretical and mathematical physics >Gauge fields, strings, solitons, anomalies, and the speed of life
【24h】

Gauge fields, strings, solitons, anomalies, and the speed of life

机译:测量场,弦,孤子,异常和生命速度

获取原文
获取原文并翻译 | 示例
           

摘要

Joel Cohen proposed that "mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better." Here, we aim for something even better. We try to combine mathematical physics and biology into a picoscope of life. For this, we merge techniques that were introduced and developed in modern mathematical physics, largely by Ludvig Faddeev, to describe objects such as solitons and Higgs and to explain phenomena such as anomalies in gauge fields. We propose a synthesis that can help to resolve the protein folding problem, one of the most important conundrums in all of science. We apply the concept of gauge invariance to scrutinize the extrinsic geometry of strings in three-dimensional space. We evoke general principles of symmetry in combination with Wilsonian universality and derive an essentially unique Landau-Ginzburg energy that describes the dynamics of a generic stringlike configuration in the far infrared. We observe that the energy supports topological solitons that relate to an anomaly similarly to how a string is framed around its inflection points. We explain how the solitons operate as modular building blocks from which folded proteins are composed. We describe crystallographic protein structures by multisolitons with experimental precision and investigate the nonequilibrium dynamics of proteins under temperature variations. We simulate the folding process of a protein at in vivo speed and with close to picoscale accuracy using a standard laptop computer. With picobiology as next pursuit of mathematical physics, things can only get better.
机译:乔尔·科恩(Joel Cohen)提出:“数学是生物学的下一个显微镜,只有更好;生物学是数学的下一个物理学,只会更好。”在这里,我们追求更好的目标。我们试图将数学物理学和生物学结合到生活中。为此,我们将主要由Ludvig Faddeev引入并在现代数学物理学中引入和发展的技术加以描述,以描述诸如孤子和希格斯之类的物体,并解释诸如规范场中的异常现象。我们提出了一种合成方法,可以帮助解决蛋白质折叠问题,这是所有科学中最重要的难题之一。我们应用规范不变性的概念来检查三维空间中弦的外在几何形状。我们结合威尔逊主义的普遍性唤起了对称性的一般原理,并得出了本质上独一无二的Landau-Ginzburg能量,它描述了远红外线中一般弦状结构的动力学。我们观察到,能量支持与异常有关的拓扑孤子,类似于字符串围绕其拐点构架的方式。我们解释了孤子如何作为组成折叠蛋白的模块化构建体起作用。我们用实验精度描述了多孤子的晶体蛋白质结构,并研究了温度变化下蛋白质的非平衡动力学。我们使用标准便携式计算机模拟了蛋白质在体内的折叠过程,并且具有接近皮皮级的精度。随着象生物学成为数学物理的下一个追求,事情只会变得更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号