首页> 外文期刊>Theoretical and Computational Fluid Dynamics >Numerical simulation of vortex ring formation in the presence of background flow with implications for squid propulsion
【24h】

Numerical simulation of vortex ring formation in the presence of background flow with implications for squid propulsion

机译:背景流动下涡流环形成的数值模拟及其对鱿鱼推进的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical simulations are used to study laminar vortex ring formation under the influence of background flow. The numerical setup includes a round-headed axisymmetric body with an opening at the posterior end from which a column of fluid is pushed out by a piston. The piston motion is explicitly included into the simulations by using a deforming mesh. A well-developed wake flow behind the body together with a finite-thickness boundary layer outside the opening is taken as the initial flow condition. As the jet is initiated, different vortex evolution behavior is observed depending on the combination of background flow velocity to mean piston velocity (U/U-p) ratio and piston stroke to opening diameter (L-m/D) ratio. For low background flow (U/U-p = 0.2) with a short jet (L-m/D = 6), a leading vortex ring pinches off from the generating jet, with an increased formation number. For intermediate background flow (U/U-p = 0.5) with a short jet (L-m/D = 6), a leading vortex ring also pinches off but with a reduced formation number. For intermediate background flow (U/U-p = 0.5) with a long jet (L-m/D = 15), no vortex ring pinch-off is observed. For high background flow (U/U-p = 0.75) with both a short (L-m/D = 6) and a long (L-m/D = 15) jet, the leading vortex structure is highly deformed with no single central axis of fluid rotation ( when viewed in cross-section) as would be expected for a roll-up vortex ring. For L-m/D = 6, the vortex structure becomes isolated as the trailing jet is destroyed by the opposite-signed vorticity of the background flow. For L-m/D = 15, the vortex structure never pinches off from the trailing jet. The underlying mechanism is the interaction between the vorticity layer of the jet and the opposite-signed vorticity layer from the initial wake. This interaction depends on both U/U-p and L-m/D. A comparison is also made between the thrust generated by long, continuous jets and jet events constructed from a periodic series of short pulses having the same total mass flux. Force calculations suggest that long, continuous jets maximize thrust generation for a given amount of energy expended in creating the jet flow. The implications of the numerical results are discussed as they pertain to adult squid propulsion, which have been observed to generate long jets without a prominent leading vortex ring.
机译:数值模拟被用来研究在背景流动的影响下层状涡流环的形成。数值装置包括一个圆头的轴对称体,在其后端有一个开口,一列流体被活塞从该开口推出。通过使用变形网格将活塞运动明确地包含在模拟中。人体后方发达的尾流以及开口外部的有限厚度边界层被视为初始流动条件。喷射开始时,根据背景流速与平均活塞速度(U / U-p)之比以及活塞冲程与开口直径(L-m / D)之比的组合,观察到不同的涡旋行为。对于短射流(L-m / D = 6)的低背景流量(U / U-p = 0.2),前涡流环会从产生的射流中挤压出来,形成的数量增加。对于短喷流(L-m / D = 6)的中间背景流(U / U-p = 0.5),前涡流环也会收缩,但形成数减少。对于具有长射流(L-m / D = 15)的中等背景流量(U / U-p = 0.5),未观察到涡流环夹断。对于短射流(Lm / D = 6)和长射流(Lm / D = 15)的高背景流(U / Up = 0.75),前导涡流结构高度变形,没有流体旋转的单个中心轴(当以横截面图观察时),如预期的那样,可以形成涡旋环。对于L-m / D = 6,由于尾流被背景流的相反符号涡旋破坏,涡旋结构变得孤立。当L-m / D = 15时,旋涡结构永远不会从尾随的喷射流中挤压出来。潜在的机制是射流的涡旋层和从初始尾流开始的相反符号的涡旋层之间的相互作用。这种相互作用取决于U / U-p和L-m / D。还比较了长时间连续喷射产生的推力和由具有相同总质量通量的周期性短脉冲序列构成的喷射事件。力计算表明,对于产生射流时所消耗的给定能量,长而连续的射流会使推力产生最大化。讨论了数值结果的含义,因为它们与成年鱿鱼推进有关,已观察到它们会产生长喷流而没有明显的前涡环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号