...
首页> 外文期刊>Tissue engineering, Part B. Reviews >In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review
【24h】

In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review

机译:电纺组织工程化血管移植的体内应用:综述。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

There is great clinical demand for synthetic vascular grafts with improved long-term efficacy. The ideal vascular conduit is easily implanted, nonthrombogenic, biocompatible, resists aneurysmal dilatation, and ultimately degrades or is assimilated as the patient remodels the graft into tissue resembling native vessel. The field of vascular tissue engineering offers an opportunity to design the ideal synthetic graft, and researchers have evaluated a variety of methods and materials for use in graft construction. Electrospinning is one method that has received considerable attention within tissue engineering for constructing so-called tissue scaffolds. Tissue scaffolds are temporary, porous structures which are commonly composed of bioresorbable polymers that promote native tissue ingrowth and have degradation kinetics compatible with a patient's rate of extracellular matrix production in order to successfully transit from synthetic conduits into neovessels. In this review, we summarize the history of tissue-engineered vascular grafts (TEVG), focusing on scaffolds generated by the electrospinning process, and discuss in vivo applications. We review the materials commonly employed in this approach and the preliminary results after implantation in animal models in order to gauge clinical viability of the electrospinning process for TEVG construction. Scientists have studied electrospinning technology for decades, but only recently has it been orthotopically evaluated in animal models such as TEVG. Advantages of electrospun TEVG include ease of construction, favorable cellular interactions, control of scaffold features such as fiber diameter and pore size, and the ability to choose from a variety of polymers possessing a range of mechanical and chemical properties and degradation kinetics. Given its advantages, electrospinning technology merits investigation for use in TEVG, but an emphasis on long-term in vivo evaluation is required before its role in clinical vascular tissue engineering can be realized.
机译:对于具有改善的长期疗效的合成血管移植物,存在巨大的临床需求。理想的血管导管易于植入,无血栓形成,生物相容性,抵抗动脉瘤扩张,并随着患者将移植物重塑成类似于天然血管的组织而最终降解或被吸收。血管组织工程领域为设计理想的合成移植物提供了机会,研究人员评估了用于移植物构建的多种方法和材料。电纺丝是在组织工程学中用于构造所谓的组织支架的一种备受关注的方法。组织支架是暂时的多孔结构,通常由生物可吸收的聚合物组成,这些生物可吸收的聚合物可促进天然组织向内生长,并具有与患者细胞外基质产生速率相适应的降解动力学,以便成功地从合成导管转移到新血管中。在这篇综述中,我们总结了组织工程血管移植物(TEVG)的历史,重点研究了静电纺丝过程中产生的支架,并讨论了其在体内的应用。我们评估了这种方法中常用的材料以及在动物模型中植入后的初步结果,以评估用于TEVG构建的静电纺丝工艺的临床可行性。科学家们已经研究了静电纺丝技术数十年,但直到最近才在动物模型(例如TEVG)中对其进行了原位评估。电纺TEVG的优点包括易于构造,有利的细胞相互作用,控制支架特征(如纤维直径和孔径)以及从具有多种机械和化学性质以及降解动力学的多种聚合物中进行选择的能力。鉴于其优势,静电纺丝技术值得研究用于TEVG,但在实现其在临床血管组织工程中的作用之前,需要强调长期体内评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号