首页> 外文期刊>Tissue engineering, Part A >Sliding indentation enhances collagen content and depth-dependent matrix distribution in tissue-engineered cartilage constructs
【24h】

Sliding indentation enhances collagen content and depth-dependent matrix distribution in tissue-engineered cartilage constructs

机译:滑动压痕可增强组织工程软骨构建物中的胶原蛋白含量和深度依赖的基质分布

获取原文
获取原文并翻译 | 示例
           

摘要

Background: Current tissue-engineered cartilage constructs contain insufficient amounts of collagen, whose function is to resist tension. We postulate that dynamic tension is necessary to stimulate collagen formation. Another shortcoming is that tissue-engineered cartilage does not possess native zonal variations. We hypothesize that applying depth-varying mechanical cues would stimulate extracellular matrix (ECM) synthesis depth dependently. We developed a dedicated loading regime called sliding indentation, which enables us to apply dynamic tension as well as depth-varying strain fields to the chondrocyte-seeded agarose constructs. Objective: In 2 study designs, we explored whether sliding indentation would increase collagen content and induce depth-varying ECM distribution. Methods: In the first study, we developed an agarose-sandwich model that involves embedding of a thin chondrocyte-seeded 0.5% agarose layer between two cell-free 3% agarose layers. In the second study, 3-mm-thick chondrocyte-seeded agarose constructs were created. Sliding indentation at 10% depth and 1 Hz was applied to constructs in both studies for 4 h/day during 28 days, and unloaded constructs served as control. Results: Sliding indentation resulted in an increased amount of collagen in the produced cartilage layer. Further, sliding indentation for 7 days resulted in a depth-dependent response at gene expression levels, with the highest response in the regions that received highest strains. Analysis of protein expression after 28 days showed a similar depth-dependent distribution in all constructs, which further enhanced by sliding indentation. Conclusions: Sliding indentation can increase collagen content and enhances depth-dependent ECM distribution, and is therefore a promising strategy for culturing cartilage with improved properties.
机译:背景:目前的组织工程软骨构建体中胶原蛋白含量不足,其功能是抵抗张力。我们假设动态张力是刺激胶原蛋白形成所必需的。另一个缺点是组织工程软骨不具有天然的带状变异。我们假设应用变化深度的机械提示会依赖性地刺激细胞外基质(ECM)的合成深度。我们开发了一种专用的加载方式,称为滑动压痕,它使我们能够将动态张力以及随深度变化的应变场应用于接种了软骨细胞的琼脂糖结构。目的:在2个研究设计中,我们探讨了滑动压痕是否会增加胶原蛋白含量并诱导深度变化的ECM分布。方法:在第一个研究中,我们开发了一种琼脂糖-三明治模型,该模型涉及在两个无细胞的3%琼脂糖层之间嵌入一个薄的软骨细胞播种的0.5%琼脂糖层。在第二项研究中,创建了3毫米厚的软骨细胞接种琼脂糖构建体。在两次研究中,在10天深度和1 Hz的滑动压痕下,在28天内每天进行4 h / d的实验,并将未加载的构建体作为对照。结果:滑动压痕导致所产生的软骨层中胶原蛋白的含量增加。此外,滑动压痕7天导致基因表达水平的深度依赖性应答,在接受最高毒株的区域中应答最高。 28天后对蛋白质表达的分析显示,所有构建体中的深度依赖性分布相似,并且通过滑动压痕进一步增强。结论:滑动压痕可以增加胶原蛋白含量并增强深度依赖的ECM分布,因此是一种具有改善特性的有前途的软骨培养策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号