...
首页> 外文期刊>The Journal of Experimental Biology >Exercise-induced maximal metabolic rate scales with muscle aerobic capacity
【24h】

Exercise-induced maximal metabolic rate scales with muscle aerobic capacity

机译:运动引起的最大代谢率随肌肉有氧能力而变化

获取原文
获取原文并翻译 | 示例

摘要

The logarithmic nature of the allometric equation suggests that metabolic rate scaling is related to some fractal properties of the organism. Two universal models have been proposed, based on (1) the fractal design of the vasculature and (2) the fractal nature of the 'total effective surface' of mitochondria and capillaries. According to these models, basal and maximal metabolic rates must scale as M3/4. This is not what we find. In 34 eutherian mammalian species (body mass Mb ranging from 7 g to 500 kg) we found VO2max to scale with the 0.872 (+/-0.029) power of body mass, which is significantly different from 3/4 power scaling. Integrated structure-function studies on a subset of eleven species (Mb 20 g to 450 kg) show that the variation of VO2max with body size is tightly associated with the total volume of mitochondria and of the locomotor musculature capillaries. In athletic species the higher VO2max is linked to proportionally larger mitochondrial and capillary volumes. As a result, VO2max is linearly related to both total mitochondrial and capillary erythrocyte volumes, as well as to their surface areas. Consequently, the allometric variation of maximal metabolic rate is directly related to the scaling of the total effective surfaces of mitochondria and capillaries, thus confirming the basic conjecture of the second fractal models but refuting the arguments for 3/4 power scaling. We conclude that the scaling of maximal metabolic rate is determined by the energy needs of the cells active during maximal work. The vascular supply network is adapted to the needs of the cells at their working limit. We conjecture that the optimization of the arterial tree by fractal design is the result rather than the cause of the evolution of metabolic rate scaling. The remaining question is why the energy needs of locomotion scale with the 0.872 or 7/8 power of body mass.
机译:异速方程的对数性质表明,代谢速率的缩放与生物体的某些分形特性有关。基于(1)脉管系统的分形设计和(2)线粒体和毛细管的“总有效表面”的分形性质,提出了两个通用模型。根据这些模型,基础代谢率和最大代谢率必须定为M3 / 4。这不是我们找到的。在34种真核哺乳动物中(体重Mb在7 g至500 kg之间),我们发现VO2max与体重的0.872(+/- 0.029)幂成比例,这与3/4幂成比例显着不同。对11种细菌(Mb 20 g至450 kg)的子集进行的综合结构功能研究表明,最大摄氧量随体型的变化与线粒体和运动性肌肉毛细血管的总量紧密相关。在运动物种中,较高的VO2max与成比例的较大线粒体和毛细管体积有关。结果,VO2max与线粒体和毛细管红细胞的总体积以及其表面积呈线性关系。因此,最大代谢率的异速变化与线粒体和毛细血管的总有效表面的缩放比例直接相关,从而确认了第二个分形模型的基本猜想,但驳斥了3/4功率缩放的论点。我们得出结论,最大代谢率的规模取决于最大工作期间活跃细胞的能量需求。血管供应网络在其工作极限时适应细胞的需求。我们推测,通过分形设计对动脉树进行优化是结果,而不是代谢速率缩放演变的原因。剩下的问题是为什么运动的能量需求与体重的0.872或7/8幂成比例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号