...
首页> 外文期刊>The Journal of Experimental Biology >Kinematics and aerodynamics of avian upstrokes during slow flight
【24h】

Kinematics and aerodynamics of avian upstrokes during slow flight

机译:慢速飞行中禽中风的运动学和空气动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Slow flight is extremely energetically costly per unit time, yet highly important for takeoff and survival. However, at slow speeds it is presently thought that most birds do not produce beneficial aerodynamic forces during the entire wingbeat: instead they fold or flex their wings during upstroke, prompting the long-standing prediction that the upstroke produces trivial forces. There is increasing evidence that the upstroke contributes to force production, but the aerodynamic and kinematic mechanisms remain unknown. Here, we examined the wingbeat cycle of two species: the diamond dove (Geopelia cuneata) and zebra finch (Taeniopygia guttata), which exhibit different upstroke styles - a wingtip-reversal and flexed-wing upstroke, respectively. We used a combination of particle image velocimetry and near-wake streamline measures alongside detailed 3D kinematics. We show that during the middle of the wingtip-reversal upstroke, the hand-wing has a high angular velocity (15.3 +/- 0.8 deg ms(-1)) and translational speed (8.4 +/- 0.6 m s(-1)). The flexed-wing upstroke, in contrast, has low wingtip speed during mid-upstroke. Instead, later in the stroke cycle, during the transition from upstroke to downstroke, it exhibits higher angular velocities (45.5 +/- 13.8 deg ms(-1)) and translational speeds (11.0 +/- 1.9 m s(-1)). Aerodynamically, the wingtip-reversal upstroke imparts momentum to the wake, with entrained air shed backward (visible as circulation of 14.4 +/- 0.09 m(2) s(-1)). In contrast, the flexed-wing upstroke imparts minimal momentum. Clap and peel in the dove enhances the time course for circulation production on the wings, and provides new evidence of convergent evolution on time-varying aerodynamic mechanisms during flapping in insects and birds.
机译:缓慢飞行每单位时间的能量消耗极其巨大,但对起飞和生存至关重要。但是,目前认为,在低速飞行中,大多数鸟类在整个翼展过程中不会产生有益的空气动力:相反,它们在上扬过程中会折叠或弯曲机翼,这促使人们长期以来一直预测上扬会产生微不足道的力。越来越多的证据表明,中风有助于力量产生,但是空气动力学和运动学机制仍然未知。在这里,我们研究了两种鸽子的翅膀节拍周期:钻石鸽子(Geopelia cuneata)和斑马雀科(Taeniopygia guttata),它们表现出不同的上冲程样式,分别是翼尖反转和弯曲翼上冲程。我们结合使用了颗粒图像测速和近乎醒目的流线测量以及详细的3D运动学技术。我们显示,在翼尖反转上冲程的中间,手翼具有较高的角速度(15.3 +/- 0.8 deg ms(-1))和平移速度(8.4 +/- 0.6 ms(-1)) 。相比之下,弯曲式机翼的上冲程在上中冲程时的翼尖速度较低。相反,在冲程周期的后期,从上冲程到下冲程的过渡过程中,它表现出较高的角速度(45.5 +/- 13.8度ms(-1))和平移速度(11.0 +/- 1.9 m s(-1))。在空气动力学上,机翼的后退向上冲程赋予尾流动量,夹带的空气向后散发(可见为14.4 +/- 0.09 m(2)s(-1)的循环)。相比之下,弯曲的机翼向上冲程产生的动量最小。鸽子的拍打和剥皮增加了机翼循环产生的时间进程,并为昆虫和鸟类拍打过程中随时间变化的空气动力学机制的收敛演化提供了新的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号