...
首页> 外文期刊>The Journal of Experimental Biology >A computational model for estimating the mechanics of horizontal flappingflight in bats: Model description and validation
【24h】

A computational model for estimating the mechanics of horizontal flappingflight in bats: Model description and validation

机译:估计蝙蝠水平拍打飞行力学的计算模型:模型描述和验证

获取原文
获取原文并翻译 | 示例

摘要

We combine three-dimensional descriptions of the movement patterns of the shoulder, elbow, carpus, third metacarpophalangeal joint and wingtip with a constant-circulation estimation of aerodynamic force to model the wing mechanics of the grey-headed flying fox (Pteropus poliocephalus) in level flight. Once rigorously validated, this computer model can be used to study diverse aspects of flight. In the model, we partitioned the wing into a series of chordwise segments and calculated the magnitude of segmental aerodynamic forces assuming an elliptical, spanwise distribution of circulation at the middle of the downstroke. The lift component of the aerodynamic force is typically an order of magnitude greater than the thrust component. The largest source of drag is induced drag, which is approximately an order of magnitude greater than body form and skin friction drag. Using this model and standard engineering beam theory, we calculate internal reaction forces, moments and stresses at the humeral and radial midshaft during flight. To assess the validity of our model, we compare the model-derived stresses with our previous in vivo empirical measurements of bone strain from P. poliocephalus in free flapping flight. Agreement between bone stresses from the simulation and those calculated from empirical strain measurements is excellent and suggests that the computer model captures a significant portion of the mechanics and aerodynamics of flight in this species.
机译:我们将对肩部,肘部,腕骨,第三掌指关节和翼尖运动模式的三维描述与对空气动力的恒定循环估计相结合,以在水平模型上模拟灰头飞狐(Pteropus poliocephalus)的机翼力学飞行。经过严格验证,此计算机模型可用于研究飞行的各个方面。在该模型中,我们将机翼分成一系列弦向段,并假设下冲量中部的环流呈椭圆形,翼展方向分布,计算了分段空气动力的大小。空气动力的升力分量通常比推力分量大一个数量级。阻力的最大来源是感应阻力,其大约比身体形态和皮肤摩擦阻力大一个数量级。使用此模型和标准工程梁理论,我们可以计算飞行过程中肱骨和径向中轴的内部反作用力,力矩和应力。为了评估我们模型的有效性,我们将模型衍生的应力与我们先前在自由扑动中脊髓灰质炎的骨应变的体内经验测量值进行了比较。通过模拟得出的骨应力与根据经验应变测量得出的骨应力之间的一致性非常好,这表明计算机模型捕获了该物种中飞行的力学和空气动力学的重要部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号