首页> 外文期刊>The Journal of Experimental Biology >Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton
【24h】

Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton

机译:毛毛虫身体特性的缩放及其对使用静液压骨架的生物力学影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Caterpillars can increase their body mass 10,000-fold in 2. weeks. It is therefore remarkable that most caterpillars appear to maintain the same locomotion kinematics throughout their entire larval stage. This study examined how the body properties of a caterpillar might change to accommodate such dramatic changes in body load. Using Manduca sexta as a model system, we measured changes in body volume, tissue density and baseline body pressure, and the dimensions of load-bearing tissues ( the cuticle and muscles) over a body mass range from milligrams to several grams. All Manduca biometrics relevant to the hydrostatic skeleton scaled allometrically but close to the isometric predictions. Body density and pressure were almost constant. We next investigated the effects of scaling on the bending stiffness of the caterpillar hydrostatic skeleton. The anisotropic non-linear mechanical response of Manduca muscles and soft cuticle has previously been quantified and modeled with constitutive equations. Using biometric data and these material laws, we constructed finite element models to simulate a hydrostatic skeleton under different conditions. The results show that increasing the internal pressure leads to a non-linear increase in bending stiffness. Increasing the body size results in a decrease in the normalized bending stiffness. Muscle activation can double this stiffness in the physiological pressure range, but thickening the cuticle or increasing the muscle area reduces the structural stiffness. These non-linear effects may dictate the effectiveness of a hydrostatic skeleton at different sizes. Given the shared anatomy and size variation in Lepidoptera larvae, these mechanical scaling constraints may implicate the diverse locomotion strategies in different species.
机译:毛毛虫可以在2周内增加体重10,000倍。因此,值得注意的是,大多数毛毛虫在其整个幼虫阶段似乎都保持相同的运动运动学。这项研究研究了毛毛虫的身体特性可能如何变化以适应如此剧烈的身体负荷变化。我们使用Manduca sexta作为模型系统,在从几毫克到几克不等的体重范围内,测量了人体体积,组织密度和基线体压以及承重组织(表皮和肌肉)的尺寸变化。与静水骨架相关的所有Manduca生物特征识别都在等距角度缩放,但接近等轴测预测。身体密度和压力几乎恒定。接下来,我们研究了结垢对履带式静液压骨架的弯曲刚度的影响。 Manduca肌肉和软角质层的各向异性非线性机械响应先前已通过本构方程进行了量化和建模。利用生物特征数据和这些材料定律,我们构建了有限元模型来模拟不同条件下的静水骨架。结果表明,增加内部压力会导致弯曲刚度非线性增加。增大车身尺寸会导致规范化的弯曲刚度降低。在生理压力范围内,肌肉激活可以使这种硬度增加一倍,但是使表皮增厚或增加肌肉面积会降低结构硬度。这些非线性效应可能会决定不同尺寸的静液压骨架的有效性。鉴于鳞翅目幼虫具有相同的解剖结构和大小变化,这些机械缩放限制可能暗示着不同物种的不同运动策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号