首页> 外文学位 >The mechanical scaling of hydrostatic skeletons: Ontogeny of earthworms, Lumbricus terrestris.
【24h】

The mechanical scaling of hydrostatic skeletons: Ontogeny of earthworms, Lumbricus terrestris.

机译:静水力学骨架的机械定标:earth的Lu虫。

获取原文
获取原文并翻译 | 示例

摘要

Soft-bodied organisms with hydrostatic skeletons range enormously in body size, both during the growth of individuals and when different species are compared. Therefore, body size is potentially an important variable determining the mechanical function of hydrostatic skeletons. This study used the ontogenetic changes in the morphology and mechanical performance of earthworm Lumbricus terrestris to examine the mechanical scaling of hydrostatic skeletons. Hydrostatic skeletons differ fundamentally from jointed skeletons in their ability to grow isometrically while maintaining similarity in both static and dynamic stresses. The peristaltic crawling of L. terrestris was kinematically similar when the motions were normalized by body length, and the shape changes of individual segments approximated dynamic strain similarity. However, even though large worms exerted greater axial and radial burrowing forces than small worms on an absolute scale, large earthworms were less forceful for their size (relative to small earthworms) than was predicted by traditional scaling theory. This result does not appear to be explained by differences in mechanical advantage. An index was derived for the calculation of mechanical advantage in leverless organisms; it indicated that, because earthworms grow isometrically, mechanical advantage was also constant as a function of body size. In summary, although both hydrostatic skeletons and jointed skeletons are capable of the same mechanical functions (e.g. maintenance of posture, antagonism of muscles and transfer of muscle forces to the environment), the mechanism of mechanical function is sufficiently distinct that the specific scaling rules that apply to jointed skeletons usually do not transfer to hydrostatic skeletons. Force production was the only variable that changed as a function of body size; otherwise, body size was not an important determinant of mechanical function of earthworm skeletons. No one quantitative scaling "rule" will apply to all hydrostatic skeletons, but this study has provided a general conceptual framework that is applicable to most of the cylindrical hydrostatic skeletons of soft-bodied organisms.
机译:具有静水骨架的软体动物的体型范围很大,无论是在个体生长期间还是在比较不同物种时。因此,体型可能是决定静液压骨架机械功能的重要变量。本研究利用used的形态和力学性能的个体发育变化来研究静水骨架的力学尺度。静液压骨架与节理骨架的根本区别在于,它们在保持静态和动态应力相似的同时,具有等距增长的能力。当通过体长对运动进行归一化时,陆生L. terrestris的蠕动在运动学上相似,并且各个节段的形状变化近似于动态应变相似性。但是,即使在绝对尺度上,大型蠕虫比小型蠕虫施加更大的轴向和径向挖土力,但大型蠕虫在尺寸上(相对于小型earth)的作用力却比传统伸缩理论所预测的要小。该结果似乎不能通过机械优势的差异来解释。得出了一个指标,用于计算无杆生物的机械优势。它表明,由于earth等距生长,因此机械优势也随体型的变化而恒定。总而言之,尽管静水骨架和关节骨架都具有相同的机械功能(例如,保持姿势,肌肉拮抗以及将肌肉力传递到环境),但机械功能的机制却非常不同,以至于特定的缩放比例规则适用于关节骨骼通常不会转移到静水骨骼。力量的产生是唯一随身体大小而变化的变量。否则,体尺不是was骨骼机械功能的重要决定因素。没有一个定量的定标“规则”将适用于所有静水骨架,但是这项研究提供了一个适用于大多数软性生物的圆柱形静水骨架的一般概念框架。

著录项

  • 作者

    Quillin, Kimberly Johnson.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Zoology.; Biology General.; Biology Animal Physiology.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 动物学;普通生物学;生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号