...
首页> 外文期刊>The Journal of Experimental Biology >Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta
【24h】

Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta

机译:鹰蛾Johnduc's sexta的约翰斯顿器官中的机械感觉神经元的编码特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Antennal mechanosensors play a key role in control and stability of insect flight. In addition to the well-established role of antennae as airflow detectors, recent studies have indicated that the sensing of antennal vibrations by Johnston's organs also provides a mechanosensory feedback relevant for flight stabilization. However, few studies have addressed how the individual units, or scolopidia, of the Johnston's organs encode these antennal vibrations and communicate it to the brain. Here, we characterize the encoding properties of individual scolopidia from the Johnston's organs in the hawk moth, Manduca sexta, through intracellular neurophysiological recordings from axons of the scolopidial neurons. We stimulated the flagellum-pedicel joint using a custom setup that delivered mechanical stimuli of various (step, sinusoidal, frequency and amplitude sweeps) waveforms. Single units of the Johnston's organs typically displayed phaso-tonic responses to step stimuli with short (3-5 ms) latencies. Their phase-locked response to sinusoidal stimuli in the 0.1-100 Hz frequency range showed high fidelity (vector strengths>0.9). The neurons were able to encode different phases of the stimulus motion and were also extremely sensitive to small amplitude (<0.05 deg) deflections with some indication of directional tuning. In many cases, the firing frequency of the neurons varied linearly as a function of the stimulus frequency at wingbeat and double wingbeat frequencies, which may be relevant to their role in flight stabilization. Iontophoretic fills of these neurons with fluorescent dyes showed that they all projected in the antennal mechanosensory and motor center (AMMC) area of the brain. Taken together, these results showcase the speed and high sensitivity of scolopidia of the Johnston's organs, and hence their ability to encode fine antennal vibrations
机译:触角机械传感器在昆虫飞行的控制和稳定性中起关键作用。除了已确立的天线作为气流检测器的作用外,最近的研究表明,约翰斯顿器官对天线振动的感测也提供了与飞行稳定相关的机械感官反馈。但是,很少有研究探讨约翰斯顿器官的各个单位或脊突足如何编码这些触角振动并将其传递给大脑。在这里,我们通过鹰嘴轴突神经元轴突的细胞内神经生理学记录,表征了鹰蛾约翰逊氏器官中的单个盘尾螺的编码特性。我们使用自定义设置刺激鞭毛-花梗关节,该设置提供各种(步进,正弦波,频率和幅度扫描)波形的机械刺激。约翰斯顿器官的单个单位通常表现出对阶跃刺激的相声响应,延迟时间较短(3-5毫秒)。它们在0.1-100 Hz频率范围内对正弦刺激的锁相响应显示出高保真度(矢量强度> 0.9)。神经元能够编码刺激运动的不同阶段,并且对小幅度(<0.05度)偏转非常敏感,并带有方向性调整的迹象。在许多情况下,神经元的激发频率根据机翼节拍和双机翼节拍频率上的刺激频率线性变化,这可能与其在飞行稳定中的作用有关。用荧光染料对这些神经元进行离子电渗疗法表明,它们都投射在大脑的触觉机械感官和运动中心(AMMC)区域。综上所述,这些结果证明了约翰斯顿氏器官脊髓灰质炎的速度和高度敏感性,并因此证明了它们能够很好地编码触角振动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号