首页> 外文期刊>The Journal of Experimental Biology >Flexibility in starting posture drives flexibility in kinematic behavior of the kinethmoid-mediated premaxillary protrusion mechanism in a cyprinid fish, Cyprinus carpio
【24h】

Flexibility in starting posture drives flexibility in kinematic behavior of the kinethmoid-mediated premaxillary protrusion mechanism in a cyprinid fish, Cyprinus carpio

机译:起始姿势的灵活性驱动着鲤鱼鲤鱼中类蠕虫介导的上颌前突机制的运动学行为的灵活性

获取原文
获取原文并翻译 | 示例
           

摘要

Premaxillary protrusion in cypriniform fishes involves rotation of the kinethmoid, an unpaired skeletal element in the dorsal midline of the rostrum. No muscles insert directly onto the kinethmoid, so its rotation must be caused by the movement of other bones. In turn, the kinethmoid is thought to push on the ascending processes of the premaxillae, effecting protrusion. To determine the causes and effects of kinethmoid motion, we used XROMM (x-ray reconstruction of moving morphology) to measure the kinematics of cranial bones in common carp, Cyprinus carpio. Mean kinethmoid rotation was 83 deg during premaxillary protrusion (18 events in 3 individuals). The kinethmoid rotates in a coordinated way with ventral translation of the maxillary bridge, and this ventral translation is likely driven primarily by the A1 beta muscle. Analyses of flexibility (variability between behaviors) and coordination (correlation between bones within a behavior) indicate that motion of the maxillary bridge, not the lower jaw, drives premaxillary protrusion. Thus, upper jaw protrusion is decoupled from lower jaw depression, allowing for two separate modes of protrusion, open mouth and closed mouth. These behaviors serve different functions: to procure food and to sort food, respectively. Variation in starting posture of the maxilla alone dictates which type of protrusion is performed; downstream motions are invariant. For closed mouth protrusion, a ventrally displaced maxillary starting posture causes kinethmoid rotation to produce more ventrally directed premaxillary protrusion. This flexibility, bestowed by the kinethmoid-maxillary bridge-A1 beta mechanism, one of several evolutionary novelties in the cypriniform feeding mechanism, may have contributed to the impressive trophic diversity that characterizes this speciose lineage.
机译:丝状鱼类的上颌前突牵涉类动蛋白的旋转,类动蛋白是讲台背中线中不成对的骨骼元素。没有肌肉直接插入到类动静脉中,因此其旋转必须由其他骨骼的运动引起。继而,类人脉被认为推动了上颌前突的上升过程,从而实现了突伸。为了确定类运动的原因和影响,我们使用了XROMM(移动形态的X射线重建)来测量鲤鱼鲤鱼的颅骨运动学。上颌前突过程中平均类风湿旋转为83度(3例发生18例)。类动素与上颌桥的腹平移以协调的方式旋转,并且该腹平移可能主要由A1β肌肉驱动。对灵活性(行为之间的差异)和协调性(行为内骨骼之间的相关性)的分析表明,上颌桥而不是下颌的运动驱动上颌前突。因此,上颚突出部与下颚凹陷分离,从而允许两种单独的突出方式:张开嘴和张开嘴。这些行为具有不同的功能:分别购买食物和分类食物。上颌骨起始姿势的变化决定了执行哪种类型的突出。下游运动是不变的。对于闭合的嘴部突出,腹侧移位的上颌起始姿势会引起类筛网旋转,从而产生更多的腹侧引导的上颌前突。这种动态性是由类蠕动-上颌桥-A1β机制赋予的,这是鲤鱼形饲养机制中的几个进化新奇之一,可能促成了这种特定谱系的令人印象深刻的营养多样性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号