首页> 外文期刊>The Journal of Experimental Biology >Symmorphosis and the insect respiratory system: a comparison between flight and hopping muscle.
【24h】

Symmorphosis and the insect respiratory system: a comparison between flight and hopping muscle.

机译:变态和昆虫的呼吸系统:飞行和跳跃肌肉之间的比较。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Weibel and Taylor's theory of symmorphosis predicts that the structural components of the respiratory system are quantitatively adjusted to satisfy, but not exceed, an animal's maximum requirement for oxygen. We tested this in the respiratory system of the adult migratory locust Locusta migratoria by comparing the aerobic capacity of hopping and flight muscle with the morphology of the oxygen cascade. Maximum oxygen uptake by flight muscle during tethered flight is 967+or-76 micro mol h-1 g-1 (body mass specific, +or-95% confidence interval CI), whereas the hopping muscles consume a maximum of 158+or-8 micro mol h-1 g-1 during jumping. The 6.1-fold difference in aerobic capacity between the two muscles is matched by a 6.4-fold difference in tracheole lumen volume, which is 3.5x108+or-1.2x108 micro m3 g-1 in flight muscle and 5.5x107+or-1.8x107 micro m3 g-1 in the hopping muscles, a 6.4-fold difference in tracheole inner cuticle surface area, which is 3.2x109+or-1.1x109 micro m2 g-1 in flight muscle and 5.0x108+or-1.7x108 micro m2 g-1 in the hopping muscles, and a 6.8-fold difference in tracheole radial diffusing capacity, which is 113+or-47 micro mol kPa-1 h-1 g-1 in flight muscle and 16.7+or-6.5 micro mol kPa-1 h-1 g-1 in the hopping muscles. However, there is little congruence between the 6.1-fold difference in aerobic capacity and the 19.8-fold difference in mitochondrial volume, which is 3.2x1010+or-3.9x109 micro m3 g-1 in flight muscle and only 1.6x109+or-1.4x108 micro m3 g-1 in the hopping muscles. Therefore, symmorphosis is upheld in the design of the tracheal system, but not in relation to the amount of mitochondria, which might be due to other factors operating at the molecular level.
机译:韦伯和泰勒的同态性理论预测,呼吸系统的结构成分需要进行定量调整,以满足但不超过动物对氧气的最大需求。我们通过将跳跃和逃跑肌肉的有氧能力与氧气级联的形态进行了比较,在成年飞蝗Locusta migratoria的呼吸系统中对此进行了测试。系留飞行中飞行肌肉的最大摄氧量为967+或-76 micro mol h -1 g -1 (特定于体重,置信区间为+或-95%CI ),而跳跃肌肉在跳跃过程中最多消耗158+或8 micro mol h -1 g -1 。两条肌肉之间有氧能力的差异是6.1倍,气管腔体积的差异是6.4倍,即3.5x10 8 +或-1.2x10 8 micro m 3 g -1 飞行肌肉和5.5x10 7 +或-1.8x10 7 micro m <跳跃肌肉中的sup> 3 g -1 ,气管内角质层表面积的差异为6.4倍,即3.2x10 9 + or-1.1飞行肌肉x10 9 微米m 2 g -1 和5.0x10 8 +或-1.7x10 8 micro m 2 g -1 在跳跃肌肉中,气管径向扩散能力相差6.8倍,为113+或-47飞行肌肉中的微摩尔kPa -1 h -1 g -1 和16.7+或-6.5 micro mol kPa -1 < / sup> h -1 g -1 在跳跃肌肉中。但是,有氧能力的差异是6.1倍,线粒体体积的差异是19.8倍,即3.2x10 10 +或-3.9x10 9 micro m 3 g -1 在飞行中只有1.6x10 9 +或-1.4x10 8 跳跃肌肉中的 3 g -1 。因此,在气管系统的设计中可以保持同构,但与线粒体的数量无关,这可能是由于在分子水平上起作用的其他因素所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号