首页> 外文期刊>The Journal of Physiology >Hyperpolarization of resting membrane potential causes retraction of spontaneous transients during mouse embryonic circuit development
【24h】

Hyperpolarization of resting membrane potential causes retraction of spontaneous transients during mouse embryonic circuit development

机译:静息膜电位的超极化导致小鼠胚胎回路发育过程中的自发瞬态回缩

获取原文
获取原文并翻译 | 示例
           

摘要

Spontaneous activity supports developmental processes in many brain regions during embryogenesis, and the spatial extent and frequency of the spontaneous activity are tightly regulated by stage. In the developing mouse hindbrain, spontaneous activity propagates widely and the waves can cover the entire hindbrain at E11.5. The activity then retracts to waves that are spatially restricted to the rostral midline at E13.5, before disappearing altogether by E15.5. However, the mechanism of retraction is unknown. We studied passive membrane properties of cells that are spatiotemporally relevant to the pattern of retraction in mouse embryonic hindbrain using whole-cell patch clamp and imaging techniques. We find that membrane excitability progressively decreases due to hyperpolarization of resting membrane potential and increased resting conductance density between E11.5 and E15.5, in a spatiotemporal pattern correlated with the retraction sequence. Retraction can be acutely reversed by membrane depolarization at E15.5, and the induced events propagate similarly to spontaneous activity at earlier stages, though without involving gap junctional coupling. Manipulation of [K+]o or [Cl]o reveals that membrane potential follows EK more closely than ECl, suggesting a dominant role for K+ conductance in the membrane hyperpolarization. Reducing membrane excitability by hyperpolarization of the resting membrane potential and increasing resting conductance are effective mechanisms to desynchronize spontaneous activity in a spatiotemporal manner, while allowing information processing to occur at the synaptic and cellular level.
机译:自发活动支持胚胎发生过程中许多大脑区域的发育过程,并且自发活动的空间范围和频率受到阶段的严格控制。在发育中的小鼠后脑中,自发活动广泛传播,并且波可以在E11.5处覆盖整个后脑。然后,活动回撤到在E13.5处空间受限于延髓中线的波浪,然后在E15.5处完全消失。但是,收回的机制尚不清楚。我们使用全细胞膜片钳和成像技术研究了与小鼠胚胎后脑退缩模式时空相关的细胞被动膜特性。我们发现,膜的兴奋性由于静息膜电位的超极化和E11.5与E15.5之间静息电导密度的增加而逐渐降低,处于与收回序列相关的时空模式。收缩可以通过在E15.5处的膜去极化而急剧逆转,并且诱发的事件类似于早期的自发活动传播,尽管不涉及间隙连接偶联。对[K +] o或[Cl] o的操作显示,膜电位跟随EC的频率比EC1更紧密,这表明K +电导在膜超极化中起主导作用。通过静息膜电位的超极化降低膜的兴奋性和增加静息电导率是有效的机制,以时空方式使自发活动不同步,同时允许在突触和细胞水平上进行信息处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号