首页> 外文期刊>The Journal of Physiology >Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information.
【24h】

Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information.

机译:神经元振荡和速率到相位的转换:机理,模型和相互信息。

获取原文
获取原文并翻译 | 示例
       

摘要

Theoretical and experimental studies suggest that oscillatory modes of processing play an important role in neuronal computations. One well supported idea is that the net excitatory input during oscillations will be reported in the phase of firing, a 'rate-to-phase transform', and that this transform might enable a temporal code. Here, we investigate the efficiency of this code at the level of fundamental single cell computations. We first develop a general framework for the understanding of the rate-to-phase transform as implemented by single neurons. Using whole cell patch-clamp recordings of rat hippocampal pyramidal neurons in vitro, we investigated the relationship between tonic excitation and phase of firing during simulated theta frequency (5 Hz) and gamma frequency (40 Hz) oscillations, over a range of physiological firing rates. During theta frequency oscillations, the phase of the first spike per cycle was a near-linear function of tonic excitation, advancing through a full 180 deg, from the peak to the trough of the oscillation cycle as excitation increased. In contrast, this relationship was not apparent for gamma oscillations, during which the phase of firing was virtually independent of the level of tonic excitatory input within the range of physiological firing rates. We show that a simple analytical model can substantially capture this behaviour, enabling generalization to other oscillatory states and cell types. The capacity of such a transform to encode information is limited by the temporal precision of neuronal activity. Using the data from our whole cell recordings, we calculated the information about the input available in the rate or phase of firing, and found the phase code to be significantly more efficient. Thus, temporal modes of processing can enable neuronal coding to be inherently more efficient, thereby allowing a reduction in processing time or in the number of neurons required.
机译:理论和实验研究表明,振荡处理模式在神经元计算中起着重要作用。一个得到很好支持的想法是,将在激发阶段报告振荡期间的净激励输入,即“速率-相位转换”,并且这种转换可以启用时间码。在这里,我们在基本单细胞计算级别上研究此代码的效率。我们首先开发一个通用框架,以理解由单个神经元实现的速率到相位的转换。使用大鼠海马锥体神经元的全细胞膜片钳记录,我们在一定的生理放电速率范围内,研究了在模拟theta频率(5 Hz)和γ频率(40 Hz)振荡过程中,兴奋刺激与放电相位之间的关系。 。在theta频率振荡期间,每个周期的第一个尖峰相位是音频激励的近线性函数,随着激励的增加,从振荡周期的峰值到波谷,将完整地向前移动180度。相反,对于伽马振荡,这种关系并不明显,在此期间,发射的阶段实际上与生理发射速率范围内的兴奋性兴奋性输入水平无关。我们表明,一个简单的分析模型可以实质上捕获这种行为,从而能够推广到其他振荡状态和细胞类型。这种转换编码信息的能力受到神经元活动时间精度的限制。使用来自整个电池记录的数据,我们计算了有关发射速率或相位中可用输入的信息,并发现相位代码明显更有效。因此,处理的时间模式可以使神经元编码固有地更有效,从而减少处理时间或所需神经元的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号