首页> 外文期刊>The Journal of Physiology >High CO2 chemosensitivity versus wide sensing spectrum: a paradoxical problem and its solutions in cultured brainstem neurons.
【24h】

High CO2 chemosensitivity versus wide sensing spectrum: a paradoxical problem and its solutions in cultured brainstem neurons.

机译:高CO2化学敏感性与宽感应光谱:在培养的脑干神经元中存在一个自相矛盾的问题及其解决方案。

获取原文
获取原文并翻译 | 示例
           

摘要

CO2 central chemoreceptors play an important role in cardiorespiratory control. They are highly sensitive to P(CO2) in a broad range. These two sensing properties seem paradoxical as none of the known pH-sensing molecules can achieve both. Here we show that cultured neuronal networks are likely to solve the sensitivity versus spectrum problem with parallel and serial processes. Studies were performed on dissociated brainstem neurons cultured on microelectrode arrays. Recordings started after a 3 week initial period of culture. A group of neurons were dose-dependently stimulated by elevated CO2 with a linear response ranging from 20 to 70 Torr. The firing rate of some neurons increased by up to 30% in response to a 1 Torr P(CO2) change, indicating that cultured brainstem neuronal networks retain high CO2 sensitivity in a broad range. Inhibition of Kir channels selectively suppressed neuronal responses to hypocapnia and mild hypercapnia. Blockade of TASK channels affected neuronal response to more severehypercapnia. These were consistent with the pKa values measured for these K+ channels in a heterologous expression system. The CO2 chemosensitivity was reduced but not eliminated by blockade of presynaptic input from serotonin, substance P or glutamate neurons, indicating that both pre and postsynaptic neurons contribute to the CO2 chemosensitivity. These results therefore strongly suggest that the physiological P(CO2) range appears to be covered by multiple sensing molecules, and that the high sensitivity may be achieved by cellular mechanisms via synaptic amplification in cultured brainstem neurons.
机译:CO2中枢化学感受器在心肺控制中起重要作用。它们在很宽的范围内对P(CO2)高度敏感。这两种感测特性似乎是自相矛盾的,因为已知的pH感测分子都无法实现这两者。在这里,我们表明,培养的神经元网络有可能通过并行和串行过程解决灵敏度与频谱问题。对在微电极阵列上培养的解离的脑干神经元进行了研究。在开始培养3周后开始记录。升高的CO2剂量依赖性地刺激一组神经元,线性响应范围为20至70 Torr。响应1 Torr P(CO2)的变化,某些神经元的放电速率最多可提高30%,这表明培养的脑干神经元网络在很宽的范围内都具有很高的CO2敏感性。抑制Kir通道选择性抑制了对低碳酸血症和轻度高碳酸血症的神经元反应。阻断TASK通道影响了神经元对重度高碳酸血症的反应。这些与在异源表达系统中针对这些K +通道测量的pKa值一致。通过阻断5-羟色胺,P物质或谷氨酸神经元的突触前输入,可减少但并未消除CO2化学敏感性,这表明突触前和突触后神经元均对CO2化学敏感性做出了贡献。因此,这些结果有力地表明,生理P(CO2)范围似乎被多个传感分子覆盖,并且高敏感性可能是通过细胞机制通过在培养的脑干神经元中进行突触放大来实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号