首页> 外文期刊>The Journal of Physiology >Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
【24h】

Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.

机译:Ih的不同水平决定了大鼠下丘脑中爆发性和规则性发作神经元的独特时间整合。

获取原文
获取原文并翻译 | 示例
           

摘要

Pyramidal neurons in the subiculum typically display either bursting or regular-spiking behaviour. Although this classification into two neuronal classes is well described, it is unknown how these two classes of neurons contribute to the integration of input to the subiculum. Here, we report that bursting neurons possess a hyperpolarization-activated cation current (I(h)) that is two-fold larger (conductance, 5.3 +/- 0.5 nS) than in regular-spiking neurons (2.2 +/- 0.6 nS), whereas I(h) exhibits similar voltage-dependent and kinetic properties in both classes of neurons. Bursting and regular-spiking neurons display similar morphology. The difference in I(h) between the two classes of neurons is not responsible for the distinct firing patterns, as neither pharmacological blockade of I(h) nor enhancement of I(h) using a dynamic clamp affects the qualitative firing patterns. Instead, the difference in I(h) between bursting and regular-spiking neurons determines the temporal integration of evoked synaptic input from the CA1 area. In response to stimulation at 50 Hz, bursting neurons, with a large I(h), show approximately 50% less temporal summation than regular-spiking neurons. The amount of temporal summation in both neuronal classes is equal after pharmacological blockade of I(h). A computer simulation model of a subicular neuron with the properties of either a bursting or a regular-spiking neuron confirmed the pivotal role of I(h) in temporal integration of synaptic input. These data suggest that in the subicular network, bursting neurons are better suited to discriminate the content of high-frequency input, such as that occurring during gamma oscillations, than regular-spiking neurons.
机译:下丘脑中的锥体神经元通常表现出爆发性或定期发作的行为。尽管已经很好地描述了将这种分类分为两个神经元类别,但是尚不清楚这两个神经元类别如何促进输入到下丘脑。在这里,我们报告爆发的神经元具有超极化激活的阳离子电流(I(h)),是常规加标神经元(2.2 +/- 0.6 nS)的两倍(电导,5.3 +/- 0.5 nS) ,而I(h)在这两类神经元中都表现出相似的电压依赖性和动力学性质。爆发和规则加长的神经元显示相似的形态。两类神经元之间I(h)的差异不负责不同的放电模式,因为I(h)的药理学阻断作用或使用动态钳位的I(h)增强均不会影响定性的放电模式。取而代之的是,爆发和规则爆发神经元之间的I(h)差异决定了CA1区域诱发的突触输入的时间积分。响应50 Hz的刺激,具有较大I(h)的爆发性神经元的时间总和比规则爆发的神经元少约50%。药理学上阻断I(h)后,两个神经元类别的时间总和相等。具有突发性或规则性神经元特性的亚神经元的计算机模拟模型证实了I(h)在突触输入的时间整合中的关键作用。这些数据表明,在规则网络中,爆发性神经元比规则峰值神经元更适合于区分高频输入的内容,例如在伽马振荡期间发生的内容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号