...
首页> 外文期刊>The Journal of the Acoustical Society of America >Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction
【24h】

Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction

机译:通过各向异性内波场的声传播:传输损耗,跨域相干性和水平折射

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is interpreted as a nonstationary oceanographic waveguide within the water column, preferentially funneling acoustic energy between the thermocline depressions.
机译:给出了计算机模拟研究的结果,用于在各向异性海洋浅水环境中进行声传播。水柱的特征是由内部重力波引起的声速场中的随机体积波动,并且这种变化叠加在占主导地位的夏季温床上。内部波场和所产生的声速扰动都在三维(3D)空间中表示,并随时间演变。等轴位移由两个分量组成:空间弥散,水平各向同性分量和来自呈水平(方位角)各向异性的波浪状孔(即孤立波包或孤波)的空间局部贡献。使用基于表示高程的广角覆盖范围和方位角的窄角覆盖范围的差分算子的3D抛物线方程代码,通过该波导传播声场。对于环境的固定时间快照,以及在代表快照的时间分布的快照的有序快照集上的时间函数,都评估传输损耗。对于垂直于源-接收器方向的水平分离点,估计水平声相干,也称为横向或跨范围相干。对于延伸到10 km的范围,1 km的跨范围和68 m的水深,在200和400 Hz的声频下都可以计算出传输损耗和空间相干性。在这种环境下会发生传播场的方位角滤波,当传播与温跃层的孤波凹陷平行时,变化最大。在相同条件下,水平相干性会发生较大的各向异性降低。声波阵面的水平折射是造成衰减的原因,这是通过平面内和平面外能量传输的能量梯度分析证明的。孤波包被解释为水柱内的非平稳海洋波导,优先在温跃层凹陷之间传播声能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号