...
首页> 外文期刊>The Journal of the Acoustical Society of America >Meteorology and elephant infrasound at Etosha National Park, Namibia
【24h】

Meteorology and elephant infrasound at Etosha National Park, Namibia

机译:纳米比亚埃托沙国家公园的气象和大象次声

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Measured vertical profiles of temperature and wind are used to model infrasound propagation over a representative high savanna habitat typically occupied by the African elephant, Loxodonta africana, to predict calling distance and area as a function of the meteorological variables. The profiles were measured up to 300 m above the surface by tethered balloon-borne instruments in Etosha National Park, Namibia, during the late dry season. Continuous local surface layer measurements of wind and temperature at 5 and 10 m provide the context for interpreting the boundary layer profiles. The fast field program (FFP) was used to predict the directionally dependent attenuation of a 15-Hz signal under these measured atmospheric conditions. The attenuation curves are used to estimate elephant infrasonic calling range and calling area. Directionality and calling range are shown to be controlled by the diurnal cycle in wind (shear) and temperature. Low-level nocturnal radiative temperature inversions and low surface wind speeds make the early evening the optimum time for the transmission of low-frequency sound at Etosha, with range at a maximum and directionality at a minimum. As the night progresses, a nocturnal low-level wind maximum (jet) forms, reducing upwind range and calling area. The estimated calling area drops rapidly after sunrise with the destruction of the inversion. Daytime calling areas are usually less than 50 km2, while early evening calling areas frequently exceed 200 km2 and are much less directional. This marked diurnal cycle will be present in any dry savanna climate, with variations due to local topography and climate. Calling range and low-frequency sound propagation cannot be effectively understood without knowledge of meteorological controls.
机译:测得的温度和风的垂直剖面用于对次声传播进行建模,该次声在典型的非洲大草原非洲象所占据的代表性高稀树草原栖息地上传播,以预测呼出距离和面积与气象变量的关系。干旱后期,纳米比亚埃托沙国家公园的系留气球式仪器在距地面300 m处测量了剖面。对5和10 m处的风和温度进行连续的局部表层测量,为解释边界层剖面提供了背景。快速现场程序(FFP)用于预测在这些测得的大气条件下15 Hz信号的方向相关衰减。衰减曲线用于估计大象的次声发射距离和发射区域。方向性和呼叫范围显示为受风(剪切)和温度的昼夜周期控制。低水平的夜间辐射温度反转和低表面风速,使傍晚成为在Etosha传输低频声音的最佳时间,其范围最大,方向性最小。随着夜晚的进行,形成了夜间低空最大风速(急流),从而减小了上风范围和呼救区域。日出后,估计的呼入面积迅速下降,反演被破坏。白天的呼叫区域通常小于50 km2,而傍晚的呼叫区域经常超过200 km2,定向性则要差得多。在任何干燥的热带稀树草原气候中都会出现这种明显的昼夜周期,并且由于当地的地形和气候而有所不同。如果没有气象控制知识,就无法有效地了解通话范围和低频声音传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号