首页> 外文期刊>Biomechanics and modeling in mechanobiology >A constrained mixture model for arterial adaptations to a sustained step change in blood flow
【24h】

A constrained mixture model for arterial adaptations to a sustained step change in blood flow

机译:用于动脉适应持续血流变化的受限混合模型

获取原文
获取原文并翻译 | 示例
       

摘要

A sustained change in blood flow results in an arterial adaptation that can be thought to consist of two general steps: an immediate vasoactive response that seeks to return the wall shear stress to its homeostatic value, and a long-term growth and remodeling process that seeks to restore the intramural stresses and, if needed, the wall shear stress toward their homeostatic values. Few papers present mathematical models of arterial growth and remodeling in general, and fewer yet address flow-induced changes. Of these, most prior models build upon the concept of "kinematic growth" proposed by Skalak in the early 1980s (Skalak R (1981) In: Proceedings of the IUTAM Symposium on finite elasticity. Martinus Nijhoff, The Hague, pp 347–355). Such approaches address important consequences of growth and remodeling, but not the fundamental means by which such changes occur. In this paper, therefore, we present a new approach for mathematically modeling arterial adaptations and, in particular, flow-induced alterations. The model is motivated by observations reported in the literature and is based on a locally homogenized, constrained mixture theory. Specifically, we develop a 3-D constitutive relation for stress in terms of the responses of the three primary load-bearing constituents and their time-varying mass fractions, with the latter accounting for the kinetics of the turnover of cells and extracellular matrix in changing, stressed configurations. Of particular importance is the concept that the natural configurations of the individual constituents can evolve separately and that this leads to changes in the overall material properties and empirically inferred residual stress field of the vessel. Potential applications are discussed, but there is a pressing need for new, theoretically motivated data to allow the prescription of specific functional forms of the requisite constitutive relations and the values of the associated material parameters.
机译:血流的持续变化导致动脉适应,可以认为这包括两个一般步骤:立即的血管活性反应,试图使壁切应力恢复到其稳态值,以及长期的生长和重塑过程,以便恢复壁内应力,并在需要时将壁切应力恢复至稳态值。很少有论文提出总体上动脉生长和重构的数学模型,而涉及流动引起的变化的论文较少。在这些模型中,大多数先前的模型都是基于Skalak在1980年代初提出的“运动增长”的概念(Skalak R(1981)在:IUTAM有限弹性研讨会论文集中。MartinusNijhoff,海牙,第347-355页) 。这些方法解决了增长和重塑的重要后果,但没有解决发生这种变化的基本方法。因此,在本文中,我们提出了一种数学方法来对动脉适应性进行建模,尤其是对流量引起的变化进行建模。该模型是基于文献报道的观察结果而来的,并且基于局部均质化的受限混合理论。具体来说,我们根据三种主要的承载成分及其随时间变化的质量分数,建立了应力的3-D本构关系,其中后者考虑了细胞和细胞外基质在变化中的动力学变化,强调配置。特别重要的是这样一个概念,即各个成分的自然构型可以分别演变,并且这会导致总体材料特性发生变化,并凭经验推断出容器的残余应力场。讨论了潜在的应用,但是迫切需要新的,理论上有动机的数据,以允许规定必要的本构关系的特定功能形式以及相关材料参数的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号