首页> 外文期刊>The Journal of Supercritical Fluids >Temperature influence and CO2 transport in foaming processes of poly( methyl methacrylate)-block copolymer nanocellular and microcellular foams
【24h】

Temperature influence and CO2 transport in foaming processes of poly( methyl methacrylate)-block copolymer nanocellular and microcellular foams

机译:聚(甲基丙烯酸甲酯)-嵌段共聚物纳米孔和微孔泡沫发泡过程中的温度影响和CO2传输

获取原文
获取原文并翻译 | 示例
           

摘要

Fabricated by high-pressure or supercritical CO2 gas dissolution foaming process, nanocellular and micro-cellular polymer foams based on poly(methyl methacrylate) (PMMA homopolymer) present a controlled nucleation mechanism by the addition of a methylmethacrylate-butylacrylate-methylmethacrylate block copolymer (MAM), leading to defined nanocellular morphologies templated by the nanostruc-turation of PMMA/MAM precursor blends. Influence of the CO2 saturation temperature on the foaming mechanism and on the foam structure has been studied in 90/10 PMMA/MAM blends and also in the neat (amorphous) PMMA or (nanostructured) MAM polymers, in order to understand the role of the MAM nanostructuration in the cell growth and coalescence phenomena. CO2 uptake and desorption measurements on series of block copolymer/homopolymer blend samples show a competitive behavior of the soft, rubbery, and CO2-philic block of PBA (poly(butyl acrylate)) domains: fast desorption kinetics but higher initial saturation. This competition nevertheless is strongly influenced by the type of dispersion of PBA (e.g. micellar or lamellar) and a very consequent influence on foaming. CO2 sorption and desorption were characterized in order to provide a better understanding of the role of the block copolymer on the foaming stages. Poly(butyl acrylate) blocks are shown to have a faster CO2 diffusion rate than poly(methyl methacrylate) but are more CO2-philic. Thus gas saturation and cell nucleation (heterogeneous) are more affected by the PBA block while cell coalescence is more affected by the PMMA phases (in the copolymer blocks+in the matrix).
机译:通过高压或超临界CO2气体溶解发泡工艺制造,基于聚甲基丙烯酸甲酯(PMMA均聚物)的纳米孔和微孔聚合物泡沫通过添加甲基丙烯酸甲酯-丙烯酸丁酯-甲基丙烯酸甲酯嵌段共聚物(MAM)表现出受控的成核机理。 ),从而通过PMMA / MAM前驱体共混物的纳米结构形成了确定的纳米细胞形态。在90/10 PMMA / MAM共混物中,以及在纯的(无定形的)PMMA或(纳米结构的)MAM聚合物中,已经研究了CO2饱和温度对起泡机理和泡沫结构的影响,以了解其作用。 MAM纳米结构在细胞中生长和聚结现象。在一系列嵌段共聚物/均聚物共混物样品上的CO2吸收和解吸测量结果显示,PBA(聚丙烯酸丁酯)域的柔软,橡胶状和亲CO2嵌段具有竞争性:解吸动力学快,但初始饱和度高。然而,这种竞争强烈地受到PBA的分散类型(例如胶束或层状)的影响,并且因此对起泡也有非常大的影响。对CO2的吸附和解吸进行了表征,以便更好地理解嵌段共聚物在发泡阶段的作用。聚(丙烯酸丁酯)嵌段显示出比聚(甲基丙烯酸甲酯)具有更快的CO 2扩散速率,但亲二氧化碳性更高。因此,PBA嵌段对气体饱和度和细胞成核作用(异质性)的影响更大,而PMMA相(在共聚物嵌段+基体中)的作用则对细胞聚结的影响更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号