首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography
【24h】

Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography

机译:反应离子刻蚀和纳米球光刻技术制备的锚定纳米粒子的等离子特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Aqueous environments pose unique challenges to the use of nanoparticle platforms for development of robust in vitro and in vivo sensors. A method is developed to anchor nanoparticles into a glass substrate by combining nanosphere lithography (NSL) and reactive ion etching (RIE) to create a mechanically durable sensing platform. The increased mechanical performance is attributed to the higher adhesion strength of NSL nanoparticles anchored in shallow nanowells formed by RIE. Using atomic force microscopy (AFM), anchored and conventional NSL nanoparticle arrays were subjected to increasing normal forces. The anchored nanoparticles were able to withstand normal forces 3 times greater (35.1 nN) compared to the conventional NSL nanoparticles (12.4 nN) prior to separation from the glass substrate. Superior adhesion in a constant flow aqueous environment is demonstrated by extinction measurements. After 1 h of 1.5 mL/min flow, extinction intensity decreased by 53% for bare and 13% for functionalized nanoparticles that were not anchored while extinction intensity decreased by only 15% for bare and less than 1% for functionalized nanoparticles that were anchored. A systematic shift to longer wavelengths is observed in the localized surface plasmon resonance (LSPR) spectra of the nanoparticle arrays as the embedded depth increases. This systematic shifting behavior of the LSPR wavelength maximum, lambda(max), in the range from 678 to 982 nm, can be used to tune the plasmon position. LSPR shifting is used to demonstrate the detection of Alzheimer's precursor ligands as a potential biosensing application of the anchored nanoparticle arrays. Furthermore, we estimate the enhancement factors for SERS of the anchored nanoparticles are on the same order of magnitude (10(8)) as the nanoparticles on flat substrates. Theoretical modeling is conducted to understand the shifting behavior of the anchored nanoparticle arrays.
机译:水环境对使用纳米颗粒平台开发健壮的体外和体内传感器提出了独特的挑战。通过结合纳米球光刻(NSL)和反应离子刻蚀(RIE)以创建机械耐用的传感平台,开发了一种将纳米粒子固定在玻璃基板中的方法。机械性能的提高归因于锚定在由RIE形成的浅纳米孔中的NSL纳米颗粒具有更高的粘附强度。使用原子力显微镜(AFM),锚定的和常规的NSL纳米颗粒阵列受到增加的法向力。与玻璃基板分离之前,传统纳米NSL纳米颗粒(12.4 nN)相比,锚定的纳米颗粒能够承受3倍(35.1 nN)的法向力。通过消光测量证明在恒定流量的水性环境中具有优异的附着力。在以1.5 mL / min的流量运行1小时后,裸露的消光强度降低了53%,未锚固的功能化纳米颗粒的消光强度降低了13%,裸露的消光强度仅降低了15%,而锚固的功能化纳米颗粒的消光强度降低了不到1%。随着嵌入深度的增加,在纳米粒子阵列的局部表面等离子体共振(LSPR)光谱中观察到向更长波长的系统转移。 LSPR波长最大值lambda(max)在678至982 nm范围内的这种系统转移行为可用于调整等离激元位置。 LSPR位移用于证明对阿尔茨海默氏症前体配体的检测,作为锚定纳米颗粒阵列的潜在生物传感应用。此外,我们估计锚定纳米颗粒的SERS增强因子与平坦基底上的纳米颗粒的数量级相同(10(8))。进行理论建模以了解锚定纳米颗粒阵列的移动行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号