...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >The Coupling of Protonation and Reduction in Proteins with Multiple Redox Centers: Theory, Computational Method, and Application to Cytochrome c_3
【24h】

The Coupling of Protonation and Reduction in Proteins with Multiple Redox Centers: Theory, Computational Method, and Application to Cytochrome c_3

机译:具有多个氧化还原中心的蛋白质质子化与还原的耦合:理论,计算方法及其在细胞色素c_3中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The coupling of protonation and reduction is crucial in many biological charge transfer reactions and is knowa as redox Bohr effect. It is caused by electrostatic interactions between protonatable and redox-active groups. In this study, I describe a method to calculate protonation and oxidation probabilities depending on the solution pH and redox potential. The energetic calculations are based on the linearized Poisson-Boltzmann equation. The actual calculation of the oxidation and protonation probababilities is done with a hybrid statistical mechanics/Tanford-Roxby approach. The method is applied to cytochrome c_3, a small protein that binds four hemes. The protein is known for coupling a protonation to the reduction reactions. The propionate D of heme I shows the strongest redox potential dependence of its proteonation probability and is thus most likely responsible for the redox Bohr effect. The computational results agree well with experimental data. Because of the interactions between the many titratable groups in proteins, titration cuves often deviate significantly from the sigmoidal shape of Henderson-Haselbalch or Nemst titration curves. This deviation requires the defination of pK_a and E~°values that depend on the pH and solution redox potential. The definitions of pK_a and E~° values provided in this study are appropriate for discussing the energetics of protonation and redox reactions throughout the whole investigated pH and solution redox potential range.
机译:质子化和还原的耦合在许多生物电荷转移反应中至关重要,并称为氧化还原玻尔效应。它是由质子化和氧化还原活性基团之间的静电相互作用引起的。在这项研究中,我描述了一种根据溶液的pH值和氧化还原电势来计算质子化和氧化概率的方法。能量计算基于线性化的Poisson-Boltzmann方程。氧化和质子化概率的实际计算是通过混合统计力学/ Tanford-Roxby方法完成的。该方法应用于细胞色素c_3,一种结合四个血红素的小蛋白质。已知该蛋白质将质子化与还原反应偶联。血红素I的丙酸酯D显示出最强的氧化还原电位依赖于其蛋白化概率,因此最有可能造成氧化还原玻尔效应。计算结果与实验数据吻合良好。由于蛋白质中许多可滴定基团之间的相互作用,滴定曲线通常明显不同于Henderson-Haselbalch或Nemst滴定曲线的S形。该偏差需要确定取决于pH值和溶液氧化还原电势的pK_a和E_°值。这项研究中提供的pK_a和E〜°的定义适用于讨论整个研究的pH和溶液氧化还原电位范围内的质子化和氧化还原反应的能量学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号