首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Solvation Structure, Thermodynamics, and Molecular Conformational Equilibria for n-Butane in Water Analyzed by Reference Interaction Site Model Theory Using an All-Atom Solute Model
【24h】

Solvation Structure, Thermodynamics, and Molecular Conformational Equilibria for n-Butane in Water Analyzed by Reference Interaction Site Model Theory Using an All-Atom Solute Model

机译:使用全原子溶质模型的参考相互作用位点模型理论分析水中正丁烷的溶剂化结构,热力学和分子构象平衡

获取原文
获取原文并翻译 | 示例
           

摘要

For the four thermodynamic states: temperature T = 283.15, 298.15, 313.15, and 328.15 K and the corresponding bulk water density ρ = 0.997, 0.9970, 0.9922, and 0.9875 g cm~(-3), for which experimental data are available, we have studied hydration structure, hydration thermodynamics, and molecular conformational equilibria for n-butane in water at infinite dilution, by means of the hypernetted chain closure reference interaction site model (HNC-RISM) theory with an all-atom solute model. The hydration structures of the trans and the gauche conformers of n-butane are presented and analyzed at the atomic level in terms of the atomic solute-solvent radial distribution functions. With these radial distribution functions as input, the n-butane conformational average hydration free energies, energies, enthalpies, and entropies are entropies are calculated. At room temperature, the normalized equilibrium distribution of n-butane conformers, the water solvent-induced rotational free energy surface and the trans-gauche and trans-cis cavity thermodynamic properties are calculated. With the optimized nonbonded potential parameters based on the CHARMM96 all-atom model for alkanes (Yin, D.; Mackerell, A. D. Jr. J. Comput. Chem. 1998, 19, 344), n-butane hydration thermodynamics and its conformational equilibria in water are well described by the HNC-RISM theory in comparison with the available experimental and computer simulation results. We also calculated the solute density derivatives of the water-water radial distribution functions δh_(vv), with the optimized CHARMM96 all-atom model, the united-atom OPLS (optimized potentials for liquid simulations), and the all-atom OPLS models for n-butane, respectively. The δh_(vv) reflect the effect of increased pressure disrupting the hydrogen bonding between water molecules. The all-atom model seems to enhance such an effect due to the well-documented shortcoming of the RISM theory in the treatment of the excluded volume of so-called auxiliary sites.
机译:对于四种热力学状态:温度T = 283.15、298.15、313.15和328.15 K,以及相应的总水密度ρ= 0.997、0.9970、0.9922和0.9875 g cm〜(-3),我们可以提供实验数据通过使用全原子溶质模型的超网状链封闭参考相互作用位点模型(HNC-RISM)理论,研究了无限稀释水中正丁烷的水合结构,水合热力学和分子构象平衡。根据原子溶质-溶剂的径向分布函数,在原子级上给出并分析了正丁烷的反式和gauche构象的水合结构。利用这些径向分布函数作为输入,计算出正丁烷构象平均水合自由能,能量,焓和熵。在室温下,计算了正丁烷构象异构体的标准化平衡分布,水溶剂诱导的旋转自由能表面以及反式和反式腔的热力学性质。利用基于CHARMM96烷烃全原子模型的最佳非键合势能参数(Yin,D .; Mackerell,AD Jr.J.Comput.Chem.1998,19,344),正丁烷水合热力学及其构象平衡与可用的实验和计算机模拟结果相比,HNC-RISM理论很好地描述了水。我们还使用优化的CHARMM96全原子模型,联合原子OPLS(用于液体模拟的最佳电势)和全原子OPLS模型,计算了水-水径向分布函数δh_(vv)的溶质密度导数。正丁烷分别。 δh_(vv)反映了增加的压力会破坏水分子之间的氢键作用。全原子模型似乎增强了这种效果,这是由于RISM理论在处理所谓的辅助位点的排除体积方面存在有据可查的缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号