首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. I. Electrostatic and Polarization Energies in Molecular Crystals
【24h】

Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. I. Electrostatic and Polarization Energies in Molecular Crystals

机译:通过对电子密度的直接数值积分来计算分子间相互作用能。一,分子晶体中的静电和极化能

获取原文
获取原文并翻译 | 示例
           

摘要

A procedure for adapting electron densities obtained by molecular orbital calculations for isolated molecules to the evaluation of intermolecular energies is presented. It involves a reduction of the number of electron pixels in the original density by screening out insignificant points and condensing the others into super pixels and the duplication of the original density according to a given multimolecular arrangement or to crystal symmetry. Electrostatic energies are calculated by direct numerical integration. For the calculation of polarization energies, the total, many-body intermolecular electric field at points over molecular space is evaluated, and a semiempirical model for distributed polarizabilities is introduced. Calculations on well-studied crystalline systems lead to an assessment of the method as concerns the treatment of density overlap zones by a proper choice of the screening and condensation parameters; apart from these, and a few other atomic polarizability parameters, the method is totally ab initio. Results for clusters of computer-generated polymorph crystal structures show that there is no relationship between the magnitudes of electrostatic and polarization energies, although some quantitative uncertainties remain for the latter because of its present semiempirical formulation. Electrostatic energies calculated with the present method are generally larger than, and not proportional to, the ones obtained by point-charge or distributed multipole methods. Partitioned analysis confirms the destabilizing and repulsive nature of some molecule-molecule interactions, hence the unreliability of localized qualitative models (e.g., parallel or antiparallel dipoles) of intermolecular interaction in crystals. The model presented here also opens the way to an evaluation of dispersion and exchange repulsion potentials.
机译:提出了一种通过分子轨道计算获得的孤立分子的分子密度来评估分子间能量的方法。它涉及通过筛选出不重要的点并将其他点浓缩为超像素来减少原始密度的电子像素数量,以及根据给定的多分子排列或晶体对称性来复制原始密度。静电能量是通过直接数值积分来计算的。为了计算极化能量,评估了分子空间上各个点的整体多体分子间电场,并引入了分布极化率的半经验模型。通过对结晶系统的深入研究,可以通过适当选择筛分和冷凝参数来评估有关密度重叠区的处理方法。除了这些,以及其他一些原子极化参数,该方法完全是从头开始的。计算机生成的多晶型物晶体结构簇的结果表明,静电和极化能的大小之间没有关系,尽管由于后者目前的半经验公式,后者仍存在一些定量不确定性。用本方法计算的静电能通常大于通过点电荷法或分布多极法获得的静电能,而不与之成比例。分区分析证实了某些分子-分子相互作用的不稳定和排斥性质,因此晶体中分子间相互作用的局部定性模型(例如,平行或反平行偶极子)不可靠。此处介绍的模型还为评估弥散和交换排斥电位开辟了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号