首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Development of Physics-Based Energy Functions that Predict Medium-Resolution Structures for Proteins of the #alpha#, #beta#, and #alpha#/#beta# Structural Classes
【24h】

Development of Physics-Based Energy Functions that Predict Medium-Resolution Structures for Proteins of the #alpha#, #beta#, and #alpha#/#beta# Structural Classes

机译:基于物理的能量函数的发展,该函数预测#alpha#,#beta#和#alpha#/#beta#结构类蛋白质的中等分辨结构

获取原文
获取原文并翻译 | 示例
           

摘要

The development of three physics-based energy functions (force fields), designed to simulate the restricted free energy of proteins of the #alpha#, #beta#, and #alpha#/#beta# structural classes, is described. Each force field corresponds to a particular weighting of the united-residue (UNRES) interactions defined in earlier work.~(1-6) To find the optimal weights for the #alpha#, #beta#, and #alpha#/#beta# force fields, both the Z-score and energy gap of the native versus nonnative structures are minimized simultaneously for four benchmark proteins: 1 pou (for the #alpha# force field), 1tpm (for the #beta# force field), and 1 bdd and betanova (for the #alpha#/#beta# force field). The simultaneous minimization was carried out by using a novel Monte Carlo method, Vector Monte Carlo (VMC). For #alpha#-helical proteins, another weighting of the UNRES interactions (denoted as the #alpha#_O force field) was developed; this fourth force field is described in a companion publication (Lee, J. et at. J. Phys. Chem. B 2001, 105, 7291). The structural implications of the final weights of the four force fields, i.e., the relative contributions of the various UNRES interactions to stabilizing common structural motifs of proteins, are analyzed. The #alpha#_O, #alpha#, #beta#, and #alpha#/#beta# force fields were used inthe CASP4 exercise for ab initio protein-structure prediction with reasonable success. Finally, using a simple model system it was shown that the VMC protocol does not require exhaustive sampling of medium- and high-energy structures in order to optimize the parameters of the potential energy adequately.
机译:描述了三个基于物理学的能量函数(力场)的发展,这些函数旨在模拟#alpha#,#beta#和#alpha#/#beta#结构类蛋白质的受限自由能。每个力场都对应于早期工作中定义的残基(UNRES)相互作用的特定权重。〜(1-6)为#alpha#,#beta#和#alpha#/#beta找到最佳权重#力场,对于四个基准蛋白质,天然结构与非天然结构的Z得分和能隙同时最小化:1 pou(对于#alpha#力场),1tpm(对于#beta#力场)和1 bdd和betanova(用于#alpha#/#beta#力场)。通过使用新型的蒙特卡洛方法Vector Monte Carlo(VMC)进行同时最小化。对于#alpha#螺旋蛋白,开发了UNRES相互作用的另一个权重(表示为#alpha#_O力场)。该第四力场在伴随出版物中描述(Lee,J。等人,J.Phys.Chem.B 2001,105,7291)。分析了四个力场的最终权重的结构含义,即各种UNRES相互作用对稳定蛋白质常见结构基序的相对贡献。在CASP4演习中将#alpha#_O,#alpha#,#beta#和#alpha#/#beta#力场用于从头算蛋白质结构的预测,并取得了一定的成功。最后,使用一个简单的模型系统表明,VMC协议不需要为了全面优化势能参数而对中高能结构进行详尽的采样。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号